Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng? A y = −x4 + 3[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
Câu 2 Công thức nào sai?
Câu 3 Hàm số nào sau đây không có cực trị?
Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2 B m ≥ e−2 C m > 2e D m > e2
Câu 5 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:
A VS.ABC = a
2 q
b2− √3a2
√ 3b2− a2
C VS.ABC =
√ 3a2b
√ 3ab2
12 .
Câu 6 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A ln x > ln y B log x > log y C logax> logay D log 1
a
x> log1
a y
Câu 7 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x
x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
A −4 < m < 1 B ∀m ∈ R C m < 3
2. D 1 < m , 4.
Câu 8 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
4πR3 D 4πR3
Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 10 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình
vuông Tính thể tích của khối trụ
Câu 11 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 12 Cho hình phẳng (H) giới hạn bởi các đường y= x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 8π
5 .
Trang 2Câu 13 Biết
5 R
1
dx 2x − 1 = ln T Giá trị của T là:
Câu 14 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
b)= ln a
ln b.
C ln(ab2)= ln a + (ln b)2 D ln(ab2)= ln a + 2 ln b
Câu 15 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A (7
4;+∞)
B [22;+∞) C (7
4; 2]S[22;+∞) D [7
4; 2]S[22;+∞)
Câu 16 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A 0 < m < 2 B −2 < m < 2 C −2 ≤ m ≤ 2 D m= 2
Câu 17 Cho hình phẳng (D) giới hạn bởi các đường y= √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành
3 .
Câu 18 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
Câu 19 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
R
y= −1
2. C minR
y= 1
y= 0
Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5= 0 Bán kính R của (S) bằng bao nhiêu?
Câu 21 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R?
A m > 2 B m > 2e C m ≥ e−2 D m > e2
Câu 22 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5 + 1 − 1
ln 5.
C y= x
5 ln 5 −
1
5 ln 5 − 1+ 1
ln 5.
Câu 23 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếu 0 < x < π thì y > 1 − 4π2 B Nếux= 1 thì y = −3
C Nếux > 2 thìy < −15 D Nếu 0 < x < 1 thì y < −3.
Câu 24 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là
một điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; 21; 21) B C(8;21
Câu 25 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây đúng?
A |→−u |= √3 B |→−u |= 1 C |→−u |= 9 D |→−u | = 3
Trang 3Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau đây:
A (1; −2; 7) B (−2; 3; 5) C (−2; 2; 6) D (4; −6; 8).
Câu 27 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường
y= 1
x, x= 1, x = 2 và trục hoành
A V = 3π
2.
Câu 28 Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vuông ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC không phải là đường sinh của hình trụ (T ) Tính cạnh của hình vuông này
√ 10
Câu 29 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là
A 2x3− 4x4 B. 2
3x
3+ x4
4 − 4x+ 4 C. 2
3x
3+ x4
3− x4+ 2x
Câu 30 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)
Câu 31 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y= 1
3x
3− (m − 2)x2+ (m − 2)x +1
3m
2có hai điểm cực trị nằm về phía bên phải trục tung?
A m > 3 hoặc m < 2 B m > 3 C m > 2 D m < 2.
Câu 32 Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A y= x4− 2x2− 1 B y= x4+ 2x2− 1 C y= −x4− 2x2− 1 D y= 2x4+ 4x2+ 1
Câu 33 Cho hàm số y= 5x 2 −3x Tính y′
A y′= (x2− 3x)5x2−3xln 5 B y′ = (2x − 3)5x2−3x
Câu 34 Cho P= 2a
4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P= 2a +b+c. B P= 2abc C P = 26abc D P = 2a +2b+3c.
Câu 35 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
17
πa2√ 17
πa2√ 15
πa2√ 17
Câu 36 Chọn mệnh đề đúng trong các mệnh đề sau:
C.R (2x+ 1)2
dx = (2x+ 1)3
2 + C
Câu 37 Tính đạo hàm của hàm số y= log4√x2− 1
A y′= x
(x2− 1) ln 4. B y
(x2− 1)log4e. C y
2(x2− 1) ln 4. D y
′ = √ 1
x2− 1 ln 4
Câu 38 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx=R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
B.
3
R
1
|x2− 2x|dx=R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
C.
3
R
1
|x2− 2x|dx= −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
Trang 43
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
Câu 39 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A. 1
√ 5
√ 15
√ 15
5 .
Câu 40 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
4.
Câu 41 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 42 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 44 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 B m < −2 C m > 2 hoặc m < −1 D m > 1 hoặc m < −1
3.
Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3√ 5
a3√ 15
a3√ 15
Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 47 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 23
25
27
29
4 .
Câu 48 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 49 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
2
5a√2
5a√3
5a√3
Câu 50 Cho bất phương trình 3
√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B Bất phương trình vô nghiệm.
C Bất phương trình đúng với mọi x ∈ (4;+∞)
D Bất phương trình đúng với mọi x ∈ [ 1; 3].
Trang 5HẾT