1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (783)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,84 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y =[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ∈ (0; 2) B m ≥ 0 C −1 < m < 7

2. D m ∈ (−1; 2).

Câu 2 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A a

3< b−√3 B. √5

a< √5

2> b√2

Câu 3 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc

tơ pháp tuyến của (P) là

A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2).

Câu 4 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?

A loga2x= 1

2 = 2loga(x − 2)

Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M

đối xứng với M qua mặt phẳng Oxz?

A M

(−2; −3; −1) B M

(2; −3; −1)

Câu 6 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 7 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên R B Hàm số nghịch biến trên (0;+∞)

C Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) D Hàm số đồng biến trên R.

Câu 8 Cho lăng trụ đều ABC.A

B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 9 Cho hàm số y= f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 10 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

Câu 11 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A N(1 ; 1 ; 7) B Q(4 ; 4 ; 2) C P(4 ; −1 ; 3) D M(0 ; 0 ; 2).

Câu 12 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 13 Tập nghiệm của bất phương trình 52x +3> −1 là

Câu 14 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; 3) B.→−n = (1; 2; 3) C.→−n = (1; 3; −2) D.→−n = (1; −2; −1)

Trang 2

Câu 15 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

4.

Câu 16 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (2 ; −3 ; 1) B (8

3; −

2

3;

7

10

2 ; −

4

3;

5

2

3; −

4

3;

5

3).

Câu 17 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là 3 và phần ảo là 2i B Phần thực là −3 và phần ảo là−2.

C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.

Câu 18 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √48 B |w|= 4√5 C |w|= 6√3 D |w|= √85

Câu 19 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 21 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 22 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 23 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 24 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 25 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực dương.

C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số phức.

Câu 26 Tích phân I = R02(2x − 1) có giá trị bằng:

Câu 27 F(x) là một nguyên hàm của hàm số y= xex 2

Hàm số nào sau đây không phải là F(x)?

A F(x) = 1

2(e

x2 + 5) B F(x) = −1

2(2 − e

x2) C F(x)= 1

2e

x2 + 2 D F(x)= −1

2e

x2 + C

Câu 28 Biết

1 R

0

3x − 1

x2+ 6x + 9 dx = 3ln

a

b −

5

6, trong đó a, b nguyên dương và

a

b là phân số tối giản Hãy tính ab

Câu 29 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

2x+ 1 + C.

C.R f(x)dx = 1

2

Trang 3

Câu 30 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (3; 1; 1) B (1; 1; 3) C (3; 3; −1) D (−1; −1; −3).

Câu 31 Nguyên hàmR 1+ lnx

x dx(x > 0) bằng

A x+ 1

2ln

2x+ C B x+ ln2x+ C C. 1

2ln

2x+ lnx + C D ln2x+ lnx + C

Câu 32 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A.Rb

a f(2x+ 3) = F(2x + 3)

b

a

B. Rb

a k · f(x)= k[F(b) − F(a)]

C Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

D.Ra

b f(x)= F(b) − F(a)

Câu 33 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng

(−2; 3) Tính I = R2

−1[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4

Câu 34 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 5

2 < |z| < 4 B 3 < |z| < 5 C. 1

2 < |z| < 2 D. 3

2 < |z| < 3

Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 36 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 37 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 22 B P= (|z| − 4)2 C P =

|z|2− 42 D P = (|z| − 2)2

Câu 39 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 3

√ 6

√ 2

√ 5

√ 2

Câu 40 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| > 1 B |A| ≥ 1 C |A| < 1 D |A| ≤ 1.

Câu 41 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 2

√ 3

Trang 4

Câu 42 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 43 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2 B y= −x4+ 2x2+ 8 C y= x3− 3x2

D y= −2x4+ 4x2

Câu 44 Biết

π 2 R

0 sin 2xdx= ea Khi đó giá trị a là:

Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R

2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

D.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 46 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

6.

Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 48 Hàm số nào trong các hàm số sau đồng biến trên R.

C y= 4x+ 1

Câu 49 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Câu 50 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − sin 3x)5x +cos3xln 5. B y′ = (1 − 3 sin 3x)5x +cos3xln 5.

C y′ = (1 + 3 sin 3x)5x +cos3xln 5. D y′ = 5x +cos3xln 5.

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN