1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 1 4 TRƯỜNG ĐIỆN TỪ

12 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Scalar and Vector Fields
Tác giả Nannapaneni Narayana Rao, Edward C. Jordan
Người hướng dẫn Distinguished Amrita Professor of Engineering
Trường học University of Illinois at Urbana-Champaign
Chuyên ngành Electrical and Computer Engineering
Thể loại Bài giảng
Thành phố Urbana
Định dạng
Số trang 12
Dung lượng 156 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Trang 1

Introduction to Electromagnetic Fields,

to supplement “Elements of Engineering

Electromagnetics, Sixth Edition”

by

Nannapaneni Narayana Rao

Edward C Jordan Professor of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Trang 2

Scalar and Vector Fields

Trang 3

FIELD is a description of how a physical quantity varies from one point to another in the region of the field (and with time)

(a) Scalar fields

Ex: Depth of a lake, d(x, y)

Temperature in a room, T(x, y, z)

Depicted graphically by constant magnitude contours or surfaces

y

x

d1

d2 d3

Trang 4

(b) Vector Fields

Ex: Velocity of points on a rotating disk

v(x, y) = v x (x, y)a x + v y (x, y)a y

Force field in three dimensions

F(x, y, z) = F x (x, y, z)a x + F y (x, y, z)a y

+ F z (x, y, z)a z

Depicted graphically by constant magnitude contours or surfaces, and direction lines (or stream lines)

Trang 5

Example: Linear velocity vector field of points on a rotating disk

Trang 6

(c) Static Fields

Fields not varying with time

(d) Dynamic Fields

Fields varying with time

Ex: Temperature in a room, T(x, y, z; t)

Trang 7

D1.10 T(x, y, z, t)

(a)

Constant temperature surfaces are elliptic cylinders,

= To  x 1 sin  t   2 1 cos y  t   4z

0

0

, , , 0 1 0 2 1 1 4

4

        

x2  4z2  const.

Trang 8

Constant temperature surfaces are spheres,

(c)

Constant temperature surfaces are ellipsoids,

T x y z

0

0

, , , 1 1 0 2 1 1 4

16 4

        

x2  16y2  4z2  const.

Trang 9

Procedure for finding the Equation for the Direction Lines of a Vector Field

The field F is

tangential to the direction line at all points on a direction line.

dl F 

ax ay az

dx dy dz

F x F y Fz

0

dx

F x  dy F y  dz F z

dl F

F F

dl

Trang 10

dr

F r r d

Fdz F z

dr

F r r d

F r sin

F

cylindrical spherical

Trang 11

P1.26 (b)xa x  ya y  za z

(Position vector)

dx

x dy y dz z

ln x ln y  ln C1 ln z  ln C2

ln x ln C1y ln C2z

x C1y C2z

Trang 12

 Direction lines are straight lines emanating radially from the origin For the line passing through (1, 2, 3),

1 C1(2) C2(3)

C1 1

2, C2 13

x y

2 z3

or, 6x 3y 2z

Ngày đăng: 12/04/2023, 21:00

TỪ KHÓA LIÊN QUAN