1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 1 5 TRƯỜNG ĐIỆN TỪ

20 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề The Electric Field
Tác giả Nannapaneni Narayana Rao, Edward C. Jordan
Người hướng dẫn Distinguished Amrita Professor of Engineering
Trường học University of Illinois at Urbana-Champaign
Thể loại Bài giảng
Thành phố Urbana
Định dạng
Số trang 20
Dung lượng 444,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Trang 1

Introduction to Electromagnetic Fields,

to supplement “Elements of Engineering

Electromagnetics, Sixth Edition”

by

Nannapaneni Narayana Rao

Edward C Jordan Professor of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Trang 2

The Electric Field

Trang 3

The Electric Field

is a force field acting on charges by virtue of the property of charge

Coulomb’s Law

R

F1 a21Q1

Q2 a12

F2 F1  Q1Q2

40R2 a21

F2  Q2Q1

40R2 a12

0 permittivity of free space

10–9

36 F / m

Trang 4

a Q

2a

D1.13(b)

From the construction, it is evident that the resultant force is directed away from the center of the square The magnitude of this resultant force is given by

Q2/40(2a2)

Q2/40(4a2)

Q2/40(2a2)

Q  40

Trang 5

   

2 2

2

4

2

0.957

a a

a

Trang 6

Electric Field Intensity, E

is defined as the force per unit charge experienced by

a small test charge when placed in the region of the field

Thus

Units:

E Lim

q 0

F

q

Fe qE

N

C N – mC • m  Vm

qE

q

E

–q

–qE

Sources: Charges;

Time-varying magnetic field

Trang 7

 

2 0

2 0

4

4 due to

R

R

Qq R Q q

R





a E

aR

q R

Q

2 0

due to

Q Q

R



Electric Field of a Point Charge

(Coulomb’s Law)

Trang 8

Constant magnitude surfaces

are spheres centered at Q.

Direction lines are radial lines

emanating from Q.

E due to charge distributions

(a) Collection of point charges

Q n

Q3

Q2

Q1 R1

R2

R3

R n

aR n

aR3

aR2

aR1

40R2j aRj

j 1

n

E

Q

aR

R

Trang 9

Q (> 0) d

x

e

d Q (> 0)

y

z

d 2 + x 2d 2 + x 2

Electron (charge e and mass m) is displaced from the origin by  (<< d) in the +x-direction and released from rest at t = 0 We wish to obtain differential

equation for the motion of the electron and its

solution

Trang 10

For any displacement x,

is directed toward the origin,

and x   d.

 F – Q e x

20d3 ax

2 2 0

3 2

2 2 0

4 2

x

x

Q e

d x

Q e x

d x









a

Trang 11

The differential equation for the motion of the electron is

Solution is given by

m d2 x

dt2 –

Qe x

20d3

d2 x

dt2 

Q e

2m0d3 x 0

2m0d3t  B

Trang 12

Using initial conditions and at t = 0,

we obtain

which represents simple harmonic motion about the origin with period

x  dx

dt 0

2m0d3 t

2 Qe

2m0d3 .

Trang 13

(b) Line Charges

Line charge density, L (C/m)

(c) Surface Charges

Surface charge density, S (C/m2)

(d) Volume Charges

Volume charge density,  (C/m3)

P dl

dS

dv

Trang 14

z a

dz

–a

ar

y

E

r

L L0 40 C m

Trang 15

 2 2 

0

For a  , E L0

20r ar

 0 3 2

0 2 2 0

0

2 2 2

0

0

2 4

2

2 2

r

r

a

r z

a L

r z

L

dz

r z

z

r r z

a

r r a r r a







a

Trang 16

Infinite Plane Sheet of Charge

of Uniform Surface Charge Density

z

z

y

dy x

y

 z2

y2

S0

Trang 17

dE z 2 S0 dy

20 y2  z2 cos 

 S0

0

z dy

y2  z2

E z  S0 z

0

dy

y2  z2

y0

 S0 z

0

1

z 0 d

 2

 S0

20

Trang 18

E S0

20 az for z  0

 S0

20 an

+ + + + +

z < 0

z = 0 z

z > 0

S0

S0

– S0

2 0 az

Trang 19

S1 S2 S3

E(3,5,1) 0 V m

Trang 20

S

1 2 3 0

1 2 3 0

1 2 3 0

0 2

2

2

2

2 6 C m0

S

Solving, we obtain

2

3 2 C m0

S

   (d) E 2,1, 6   4 V maz

(a)

(c)

(b)

Ngày đăng: 12/04/2023, 21:03