1. Trang chủ
  2. » Giáo án - Bài giảng

Tích phân nâng cao cho thí sinh ôn thi đại học

14 370 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Tích phân nâng cao cho thí sinh ôn thi đại học
Trường học University of Science
Chuyên ngành Mathematics
Thể loại Tài liệu
Thành phố Ho Chi Minh City
Định dạng
Số trang 14
Dung lượng 144,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chúc các bạn thành công

Trang 1

Table of Integrals

Basic Forms

(1)

Z

xndx = 1

n + 1x

n+1

, n 6= −1

(2)

Z 1

xdx = ln |x|

(3)

Z udv = uv −

Z vdu

(4)

Z 1

ax + bdx =

1

aln |ax + b|

Integrals of Rational Functions

(5)

Z 1 (x + a)2dx = − 1

x + a

(6)

Z (x + a)ndx = (x + a)

n+1

n + 1 , n 6= −1

(7)

Z x(x + a)ndx = (x + a)

n+1((n + 1)x − a) (n + 1)(n + 2)

(8)

Z 1

1 + x2dx = tan−1x

(9)

a2+ x2dx = 1

atan

−1 x a

Trang 2

(10) x

a2+ x2dx = 1

2ln |a

2+ x2|

(11)

Z

x2

a2 + x2dx = x − a tan−1 x

a

(12)

Z

x3

a2+ x2dx = 1

2x

2− 1

2a

2ln |a2+ x2|

(13)

ax2 + bx + cdx =

2

√ 4ac − b2 tan−1 √2ax + b

4ac − b2

(14)

(x + a)(x + b)dx =

1

b − aln

a + x

b + x, a 6= b

(15)

(x + a)2dx = a

a + x + ln |a + x|

(16)

Z

x

ax2+ bx + cdx =

1 2aln |ax

2

a√ 4ac − b2 tan−1√2ax + b

4ac − b2

Integrals with Roots

(17)

x − a dx = 2

3(x − a)

3/2

(18)

Z 1

x ± a dx = 2

x ± a

(19)

a − x dx = −2

a − x

Trang 3

Z

x√

x − a dx =

2a

3 (x − a)3/2+25 (x − a)5/2, or

2

3x(x − a)3/2− 4

15(x − a)5/2, or

2

15(2a + 3x)(x − a)3/2

(21)

ax + b dx = 2b

3a +

2x 3

√

ax + b

(22)

Z (ax + b)3/2 dx = 2

5a(ax + b)

5/2

(23)

Z x

x ± a dx =

2

3(x ∓ 2a)

x ± a

(24)

x

a − x dx = −

p x(a − x) − a tan−1 px(a − x)

x − a

(25)

x

a + x dx =

p x(a + x) − a ln√x +√x + a

(26)

Z

x√

ax + b dx = 2

15a2(−2b2+ abx + 3a2x2)√

ax + b

(27)

Z

p

x(ax + b) dx = 1

4a3/2

h (2ax + b)pax(ax + b) − b2ln

a√

x +pa(ax + b)

i

(28)

Z

p

x3(ax + b) dx =

 b 12a − b

2

8a2x +

x 3

 p

x3(ax + b)+ b

3

8a5/2 ln

a√

x +pa(ax + b)

(29)

x2± a2 dx = 1

2x

x2± a2± 1

2a

2ln

x +√

x2± a2

Trang 4

a2− x2 dx = 1

2x

a2− x2+ 1

2a

2tan−1 √ x

a2− x2

(31)

Z

x√

x2± a2 dx = 1

3 x

2± a23/2

(32)

Z

1

x2 ± a2 dx = ln

x +√

x2± a2

(33)

a2− x2 dx = sin−1 x

a

(34)

Z

x

x2± a2 dx =√

x2± a2

(35)

a2− x2 dx = −√

a2− x2

(36)

x2± a2 dx = 1

2x

x2± a2∓1

2a

2

ln

x +√

x2± a2

(37)

ax2+ bx + c dx = b + 2ax

4a

ax2+ bx + c+4ac − b

2

8a3/2 ln

2ax + b + 2pa(ax2+ bx+c)

Z

x√

ax2+ bx + c dx = 1

48a5/2



2√

a√

ax2+ bx + c −3b2+ 2abx + 8a(c + ax2)

+3(b3− 4abc) ln

b + 2ax + 2√

a√

ax2+ bx + c

 (38)

Trang 5

(39) √ 1

ax2+ bx + c dx =

1

aln

2ax + b + 2pa(ax2 + bx + c)

(40)

Z

x

ax2+ bx + c dx =

1 a

ax2+ bx + c− b

2a3/2 ln

2ax + b + 2pa(ax2+ bx + c)

(41)

(a2+ x2)3/2 = x

a2√

a2+ x2

Integrals with Logarithms

(42)

Z

ln ax dx = x ln ax − x

(43)

Z

x ln x dx = 1

2x

2ln x − x

2

4

(44)

Z

x2ln x dx = 1

3x

3

ln x −x

3

9

(45)

Z

xnln x dx = xn+1



ln x

(n + 1)2

 , n 6= −1

(46)

Z ln ax

1

2(ln ax)

2

(47)

Z

ln x

x2 dx = −1

x −ln x x

(48)

Z ln(ax + b) dx =



x + b a

 ln(ax + b) − x, a 6= 0

Trang 6

(49) ln(x2+ a2) dx = x ln(x2+ a2) + 2a tan−1x

a − 2x

(50)

Z ln(x2− a2) dx = x ln(x2 − a2) + a lnx + a

x − a − 2x

(51)

Z

ln ax2+ bx + c dx = 1

a

√ 4ac − b2tan−1√2ax + b

4ac − b2−2x+ b

2a + x



ln ax2+ bx + c

(52)

Z

x ln(ax + b) dx = bx

2a − 1

4x

2+ 1 2



x2− b

2

a2

 ln(ax + b)

(53)

Z

x ln a2− b2x2

dx = −1

2x

2 +1 2



x2− a

2

b2



ln a2− b2x2

(54)

Z (ln x)2 dx = 2x − 2x ln x + x(ln x)2

(55)

Z

(ln x)3 dx = −6x + x(ln x)3− 3x(ln x)2+ 6x ln x

(56)

Z x(ln x)2 dx = x

2

4 +

1

2x

2

(ln x)2− 1

2x

2

ln x

(57)

Z

x2(ln x)2 dx = 2x

3

27 +

1

3x

3(ln x)2− 2

9x

3ln x

Trang 7

Integrals with Exponentials

(58)

Z

eax dx = 1

ae

ax

(59)

xeax dx = 1

a

xeax+ i

√ π 2a3/2erf i√

ax , where erf(x) = √2

π

Z x

0

e−t2dt

(60)

Z

xex dx = (x − 1)ex

(61)

Z

xeax dx = x

a − 1

a2



eax

(62)

Z

x2ex dx = x2− 2x + 2 ex

(63)

Z

x2eax dx = x2

a − 2x

a2 + 2

a3



eax

(64)

Z

x3ex dx = x3− 3x2+ 6x − 6 ex

(65)

Z

xneax dx = x

neax

a

Z

xn−1eaxdx

(66)

Z

xneax dx = (−1)

n

an+1 Γ[1 + n, −ax], where Γ(a, x) =

Z ∞

x

ta−1e−tdt

(67)

Z

eax2 dx = −i

√ π

2√

aerf ix

a

Trang 8

Z

e−ax2 dx =

√ π

2√

aerf x

a

(69)

Z

xe−ax2 dx = − 1

2ae

−ax 2

(70)

Z

x2e−ax2 dx = 1

4

r π

a3erf(x√

a) − x 2ae

−ax 2

Integrals with Trigonometric Functions

(71)

Z sin ax dx = −1

acos ax

(72)

Z sin2ax dx = x

2 − sin 2ax

4a

(73)

Z sin3ax dx = −3 cos ax

cos 3ax 12a

(74)

Z

sinnax dx = −1

acos ax 2F1

 1

2,

1 − n

2 ,

3

2, cos

2ax



(75)

Z cos ax dx = 1

asin ax

(76)

Z cos2ax dx = x

2 +

sin 2ax 4a

(77)

Z cos3axdx = 3 sin ax

sin 3ax 12a

Trang 9

(78) cospaxdx = − 1

a(1 + p)cos

1+pax ×2F1 1 + p

2 ,

1

2,

3 + p

2 , cos

2ax

(79)

Z

cos x sin x dx = 1

2sin

2

x + c1 = −1

2cos

2

x + c2 = −1

4cos 2x + c3

(80)

Z

cos ax sin bx dx = cos[(a − b)x]

2(a − b) − cos[(a + b)x]

2(a + b) , a 6= b

(81)

Z

sin2ax cos bx dx = −sin[(2a − b)x]

4(2a − b) +

sin bx 2b − sin[(2a + b)x]

4(2a + b)

(82)

Z sin2x cos x dx = 1

3sin

3

x

(83)

Z

cos2ax sin bx dx = cos[(2a − b)x]

4(2a − b) − cos bx

2b − cos[(2a + b)x]

4(2a + b)

(84)

Z cos2ax sin ax dx = − 1

3acos

3

ax

(85)

Z

sin2ax cos2bxdx = x

4−sin 2ax 8a −sin[2(a − b)x]

16(a − b) +

sin 2bx 8b −sin[2(a + b)x]

16(a + b)

(86)

Z sin2ax cos2ax dx = x

8 − sin 4ax 32a

(87)

Z tan ax dx = −1

aln cos ax

Trang 10

(88) tan2ax dx = −x + 1

atan ax

(89)

Z

tannax dx = tan

n+1ax a(1 + n) ×2F1 n + 1

2 , 1,

n + 3

2 , − tan

2ax



(90)

Z tan3axdx = 1

aln cos ax +

1 2asec

2ax

(91)

Z sec x dx = ln | sec x + tan x| = 2 tanh−1tanx

2



(92)

Z sec2ax dx = 1

atan ax

(93)

Z sec3x dx = 1

2sec x tan x +

1

2ln | sec x + tan x|

(94)

Z sec x tan x dx = sec x

(95)

Z sec2x tan x dx = 1

2sec

2x

(96)

Z secnx tan x dx = 1

n sec

nx, n 6= 0

(97)

Z csc x dx = ln

tanx 2

= ln | csc x − cot x| + C

Trang 11

(98) csc2ax dx = −1

acot ax

(99)

Z csc3x dx = −1

2cot x csc x +

1

2ln | csc x − cot x|

(100)

Z cscnx cot x dx = −1

n csc

nx, n 6= 0

(101)

Z sec x csc x dx = ln | tan x|

Products of Trigonometric Functions and Monomials

(102)

Z

x cos x dx = cos x + x sin x

(103)

Z

x cos ax dx = 1

a2 cos ax + x

a sin ax

(104)

Z

x2cos x dx = 2x cos x + x2 − 2 sin x

(105)

Z

x2cos ax dx = 2x cos ax

2x2− 2

a3 sin ax

(106)

Z

xncos xdx = −1

2(i)

n+1[Γ(n + 1, −ix) + (−1)nΓ(n + 1, ix)]

(107)

Z

xncos ax dx = 1

2(ia)

1−n[(−1)nΓ(n + 1, −iax) − Γ(n + 1, ixa)]

Trang 12

(108) x sin x dx = −x cos x + sin x

(109)

Z

x sin ax dx = −x cos ax

sin ax

a2

(110)

Z

x2sin x dx = 2 − x2 cos x + 2x sin x

(111)

Z

x2sin ax dx = 2 − a

2x2

a3 cos ax + 2x sin ax

a2

(112)

Z

xnsin x dx = −1

2(i)

n

[Γ(n + 1, −ix) − (−1)nΓ(n + 1, −ix)]

(113)

Z

x cos2x dx = x

2

4 +

1

8cos 2x +

1

4x sin 2x

(114)

Z

x sin2x dx = x

2

4 − 1

8cos 2x −

1

4x sin 2x

(115)

Z

x tan2x dx = −x

2

2 + ln cos x + x tan x

(116)

Z

x sec2x dx = ln cos x + x tan x

Trang 13

Products of Trigonometric Functions and Exponentials

(117)

Z

exsin x dx = 1

2e

x(sin x − cos x)

(118)

Z

ebxsin ax dx = 1

a2 + b2ebx(b sin ax − a cos ax)

(119)

Z

excos x dx = 1

2e

x

(sin x + cos x)

(120)

Z

ebxcos ax dx = 1

a2+ b2ebx(a sin ax + b cos ax)

(121)

Z

xexsin x dx = 1

2e

x

(cos x − x cos x + x sin x)

(122)

Z

xexcos x dx = 1

2e

x(x cos x − sin x + x sin x)

Integrals of Hyperbolic Functions

(123)

Z cosh ax dx = 1

asinh ax

(124)

Z

eaxcosh bx dx =

eax

a2− b2[a cosh bx − b sinh bx] a 6= b

e2ax

4a +

x

(125)

Z sinh ax dx = 1

acosh ax

Trang 14

Z

eaxsinh bx dx =

eax

a2− b2[−b cosh bx + a sinh bx] a 6= b

e2ax

4a −x

(127)

Z tanh ax dx = 1

aln cosh ax

(128)

Z

eaxtanh bx dx =

e(a+2b)x

(a + 2b)2F1

h

1 + a 2b, 1, 2 +

a 2b, −e

2bxi

−1

ae

ax

2F1

h

1, a 2b, 1 +

a 2b, −e

2bxi

a 6= b

eax− 2 tan−1[eax]

(129)

Z

cos ax cosh bx dx = 1

a2+ b2 [a sin ax cosh bx + b cos ax sinh bx] (130)

Z

cos ax sinh bx dx = 1

a2+ b2 [b cos ax cosh bx + a sin ax sinh bx]

(131)

Z

sin ax cosh bx dx = 1

a2+ b2 [−a cos ax cosh bx + b sin ax sinh bx] (132)

Z

sin ax sinh bx dx = 1

a2+ b2 [b cosh bx sin ax − a cos ax sinh bx] (133)

Z sinh ax cosh axdx = 1

4a[−2ax + sinh 2ax]

(134)

Z

sinh ax cosh bx dx = 1

b2− a2 [b cosh bx sinh ax − a cosh ax sinh bx]

is provided as is without warranty or representation about the accuracy, correctness or suitability of this material for any purpose This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License To view

a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,

94105, USA.

Ngày đăng: 12/05/2014, 21:57

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w