Chúc các bạn thành công
Trang 1Table of Integrals
Basic Forms
(1)
Z
xndx = 1
n + 1x
n+1
, n 6= −1
(2)
Z 1
xdx = ln |x|
(3)
Z udv = uv −
Z vdu
(4)
Z 1
ax + bdx =
1
aln |ax + b|
Integrals of Rational Functions
(5)
Z 1 (x + a)2dx = − 1
x + a
(6)
Z (x + a)ndx = (x + a)
n+1
n + 1 , n 6= −1
(7)
Z x(x + a)ndx = (x + a)
n+1((n + 1)x − a) (n + 1)(n + 2)
(8)
Z 1
1 + x2dx = tan−1x
(9)
a2+ x2dx = 1
atan
−1 x a
Trang 2(10) x
a2+ x2dx = 1
2ln |a
2+ x2|
(11)
Z
x2
a2 + x2dx = x − a tan−1 x
a
(12)
Z
x3
a2+ x2dx = 1
2x
2− 1
2a
2ln |a2+ x2|
(13)
ax2 + bx + cdx =
2
√ 4ac − b2 tan−1 √2ax + b
4ac − b2
(14)
(x + a)(x + b)dx =
1
b − aln
a + x
b + x, a 6= b
(15)
(x + a)2dx = a
a + x + ln |a + x|
(16)
Z
x
ax2+ bx + cdx =
1 2aln |ax
2
a√ 4ac − b2 tan−1√2ax + b
4ac − b2
Integrals with Roots
(17)
x − a dx = 2
3(x − a)
3/2
(18)
Z 1
√
x ± a dx = 2
√
x ± a
(19)
√
a − x dx = −2
√
a − x
Trang 3Z
x√
x − a dx =
2a
3 (x − a)3/2+25 (x − a)5/2, or
2
3x(x − a)3/2− 4
15(x − a)5/2, or
2
15(2a + 3x)(x − a)3/2
(21)
ax + b dx = 2b
3a +
2x 3
√
ax + b
(22)
Z (ax + b)3/2 dx = 2
5a(ax + b)
5/2
(23)
Z x
√
x ± a dx =
2
3(x ∓ 2a)
√
x ± a
(24)
x
a − x dx = −
p x(a − x) − a tan−1 px(a − x)
x − a
(25)
x
a + x dx =
p x(a + x) − a ln√x +√x + a
(26)
Z
x√
ax + b dx = 2
15a2(−2b2+ abx + 3a2x2)√
ax + b
(27)
Z
p
x(ax + b) dx = 1
4a3/2
h (2ax + b)pax(ax + b) − b2ln
a√
x +pa(ax + b)
i
(28)
Z
p
x3(ax + b) dx =
b 12a − b
2
8a2x +
x 3
p
x3(ax + b)+ b
3
8a5/2 ln
a√
x +pa(ax + b)
(29)
x2± a2 dx = 1
2x
√
x2± a2± 1
2a
2ln
x +√
x2± a2
Trang 4
a2− x2 dx = 1
2x
√
a2− x2+ 1
2a
2tan−1 √ x
a2− x2
(31)
Z
x√
x2± a2 dx = 1
3 x
2± a23/2
(32)
Z
1
√
x2 ± a2 dx = ln
x +√
x2± a2
(33)
√
a2− x2 dx = sin−1 x
a
(34)
Z
x
√
x2± a2 dx =√
x2± a2
(35)
√
a2− x2 dx = −√
a2− x2
(36)
√
x2± a2 dx = 1
2x
√
x2± a2∓1
2a
2
ln
x +√
x2± a2
(37)
ax2+ bx + c dx = b + 2ax
4a
√
ax2+ bx + c+4ac − b
2
8a3/2 ln
2ax + b + 2pa(ax2+ bx+c)
Z
x√
ax2+ bx + c dx = 1
48a5/2
2√
a√
ax2+ bx + c −3b2+ 2abx + 8a(c + ax2)
+3(b3− 4abc) ln
b + 2ax + 2√
a√
ax2+ bx + c
(38)
Trang 5(39) √ 1
ax2+ bx + c dx =
1
√
aln
2ax + b + 2pa(ax2 + bx + c)
(40)
Z
x
√
ax2+ bx + c dx =
1 a
√
ax2+ bx + c− b
2a3/2 ln
2ax + b + 2pa(ax2+ bx + c)
(41)
(a2+ x2)3/2 = x
a2√
a2+ x2
Integrals with Logarithms
(42)
Z
ln ax dx = x ln ax − x
(43)
Z
x ln x dx = 1
2x
2ln x − x
2
4
(44)
Z
x2ln x dx = 1
3x
3
ln x −x
3
9
(45)
Z
xnln x dx = xn+1
ln x
(n + 1)2
, n 6= −1
(46)
Z ln ax
1
2(ln ax)
2
(47)
Z
ln x
x2 dx = −1
x −ln x x
(48)
Z ln(ax + b) dx =
x + b a
ln(ax + b) − x, a 6= 0
Trang 6(49) ln(x2+ a2) dx = x ln(x2+ a2) + 2a tan−1x
a − 2x
(50)
Z ln(x2− a2) dx = x ln(x2 − a2) + a lnx + a
x − a − 2x
(51)
Z
ln ax2+ bx + c dx = 1
a
√ 4ac − b2tan−1√2ax + b
4ac − b2−2x+ b
2a + x
ln ax2+ bx + c
(52)
Z
x ln(ax + b) dx = bx
2a − 1
4x
2+ 1 2
x2− b
2
a2
ln(ax + b)
(53)
Z
x ln a2− b2x2
dx = −1
2x
2 +1 2
x2− a
2
b2
ln a2− b2x2
(54)
Z (ln x)2 dx = 2x − 2x ln x + x(ln x)2
(55)
Z
(ln x)3 dx = −6x + x(ln x)3− 3x(ln x)2+ 6x ln x
(56)
Z x(ln x)2 dx = x
2
4 +
1
2x
2
(ln x)2− 1
2x
2
ln x
(57)
Z
x2(ln x)2 dx = 2x
3
27 +
1
3x
3(ln x)2− 2
9x
3ln x
Trang 7Integrals with Exponentials
(58)
Z
eax dx = 1
ae
ax
(59)
xeax dx = 1
a
√
xeax+ i
√ π 2a3/2erf i√
ax , where erf(x) = √2
π
Z x
0
e−t2dt
(60)
Z
xex dx = (x − 1)ex
(61)
Z
xeax dx = x
a − 1
a2
eax
(62)
Z
x2ex dx = x2− 2x + 2 ex
(63)
Z
x2eax dx = x2
a − 2x
a2 + 2
a3
eax
(64)
Z
x3ex dx = x3− 3x2+ 6x − 6 ex
(65)
Z
xneax dx = x
neax
a
Z
xn−1eaxdx
(66)
Z
xneax dx = (−1)
n
an+1 Γ[1 + n, −ax], where Γ(a, x) =
Z ∞
x
ta−1e−tdt
(67)
Z
eax2 dx = −i
√ π
2√
aerf ix
√
a
Trang 8Z
e−ax2 dx =
√ π
2√
aerf x
√
a
(69)
Z
xe−ax2 dx = − 1
2ae
−ax 2
(70)
Z
x2e−ax2 dx = 1
4
r π
a3erf(x√
a) − x 2ae
−ax 2
Integrals with Trigonometric Functions
(71)
Z sin ax dx = −1
acos ax
(72)
Z sin2ax dx = x
2 − sin 2ax
4a
(73)
Z sin3ax dx = −3 cos ax
cos 3ax 12a
(74)
Z
sinnax dx = −1
acos ax 2F1
1
2,
1 − n
2 ,
3
2, cos
2ax
(75)
Z cos ax dx = 1
asin ax
(76)
Z cos2ax dx = x
2 +
sin 2ax 4a
(77)
Z cos3axdx = 3 sin ax
sin 3ax 12a
Trang 9(78) cospaxdx = − 1
a(1 + p)cos
1+pax ×2F1 1 + p
2 ,
1
2,
3 + p
2 , cos
2ax
(79)
Z
cos x sin x dx = 1
2sin
2
x + c1 = −1
2cos
2
x + c2 = −1
4cos 2x + c3
(80)
Z
cos ax sin bx dx = cos[(a − b)x]
2(a − b) − cos[(a + b)x]
2(a + b) , a 6= b
(81)
Z
sin2ax cos bx dx = −sin[(2a − b)x]
4(2a − b) +
sin bx 2b − sin[(2a + b)x]
4(2a + b)
(82)
Z sin2x cos x dx = 1
3sin
3
x
(83)
Z
cos2ax sin bx dx = cos[(2a − b)x]
4(2a − b) − cos bx
2b − cos[(2a + b)x]
4(2a + b)
(84)
Z cos2ax sin ax dx = − 1
3acos
3
ax
(85)
Z
sin2ax cos2bxdx = x
4−sin 2ax 8a −sin[2(a − b)x]
16(a − b) +
sin 2bx 8b −sin[2(a + b)x]
16(a + b)
(86)
Z sin2ax cos2ax dx = x
8 − sin 4ax 32a
(87)
Z tan ax dx = −1
aln cos ax
Trang 10(88) tan2ax dx = −x + 1
atan ax
(89)
Z
tannax dx = tan
n+1ax a(1 + n) ×2F1 n + 1
2 , 1,
n + 3
2 , − tan
2ax
(90)
Z tan3axdx = 1
aln cos ax +
1 2asec
2ax
(91)
Z sec x dx = ln | sec x + tan x| = 2 tanh−1tanx
2
(92)
Z sec2ax dx = 1
atan ax
(93)
Z sec3x dx = 1
2sec x tan x +
1
2ln | sec x + tan x|
(94)
Z sec x tan x dx = sec x
(95)
Z sec2x tan x dx = 1
2sec
2x
(96)
Z secnx tan x dx = 1
n sec
nx, n 6= 0
(97)
Z csc x dx = ln
tanx 2
= ln | csc x − cot x| + C
Trang 11(98) csc2ax dx = −1
acot ax
(99)
Z csc3x dx = −1
2cot x csc x +
1
2ln | csc x − cot x|
(100)
Z cscnx cot x dx = −1
n csc
nx, n 6= 0
(101)
Z sec x csc x dx = ln | tan x|
Products of Trigonometric Functions and Monomials
(102)
Z
x cos x dx = cos x + x sin x
(103)
Z
x cos ax dx = 1
a2 cos ax + x
a sin ax
(104)
Z
x2cos x dx = 2x cos x + x2 − 2 sin x
(105)
Z
x2cos ax dx = 2x cos ax
2x2− 2
a3 sin ax
(106)
Z
xncos xdx = −1
2(i)
n+1[Γ(n + 1, −ix) + (−1)nΓ(n + 1, ix)]
(107)
Z
xncos ax dx = 1
2(ia)
1−n[(−1)nΓ(n + 1, −iax) − Γ(n + 1, ixa)]
Trang 12(108) x sin x dx = −x cos x + sin x
(109)
Z
x sin ax dx = −x cos ax
sin ax
a2
(110)
Z
x2sin x dx = 2 − x2 cos x + 2x sin x
(111)
Z
x2sin ax dx = 2 − a
2x2
a3 cos ax + 2x sin ax
a2
(112)
Z
xnsin x dx = −1
2(i)
n
[Γ(n + 1, −ix) − (−1)nΓ(n + 1, −ix)]
(113)
Z
x cos2x dx = x
2
4 +
1
8cos 2x +
1
4x sin 2x
(114)
Z
x sin2x dx = x
2
4 − 1
8cos 2x −
1
4x sin 2x
(115)
Z
x tan2x dx = −x
2
2 + ln cos x + x tan x
(116)
Z
x sec2x dx = ln cos x + x tan x
Trang 13Products of Trigonometric Functions and Exponentials
(117)
Z
exsin x dx = 1
2e
x(sin x − cos x)
(118)
Z
ebxsin ax dx = 1
a2 + b2ebx(b sin ax − a cos ax)
(119)
Z
excos x dx = 1
2e
x
(sin x + cos x)
(120)
Z
ebxcos ax dx = 1
a2+ b2ebx(a sin ax + b cos ax)
(121)
Z
xexsin x dx = 1
2e
x
(cos x − x cos x + x sin x)
(122)
Z
xexcos x dx = 1
2e
x(x cos x − sin x + x sin x)
Integrals of Hyperbolic Functions
(123)
Z cosh ax dx = 1
asinh ax
(124)
Z
eaxcosh bx dx =
eax
a2− b2[a cosh bx − b sinh bx] a 6= b
e2ax
4a +
x
(125)
Z sinh ax dx = 1
acosh ax
Trang 14Z
eaxsinh bx dx =
eax
a2− b2[−b cosh bx + a sinh bx] a 6= b
e2ax
4a −x
(127)
Z tanh ax dx = 1
aln cosh ax
(128)
Z
eaxtanh bx dx =
e(a+2b)x
(a + 2b)2F1
h
1 + a 2b, 1, 2 +
a 2b, −e
2bxi
−1
ae
ax
2F1
h
1, a 2b, 1 +
a 2b, −e
2bxi
a 6= b
eax− 2 tan−1[eax]
(129)
Z
cos ax cosh bx dx = 1
a2+ b2 [a sin ax cosh bx + b cos ax sinh bx] (130)
Z
cos ax sinh bx dx = 1
a2+ b2 [b cos ax cosh bx + a sin ax sinh bx]
(131)
Z
sin ax cosh bx dx = 1
a2+ b2 [−a cos ax cosh bx + b sin ax sinh bx] (132)
Z
sin ax sinh bx dx = 1
a2+ b2 [b cosh bx sin ax − a cos ax sinh bx] (133)
Z sinh ax cosh axdx = 1
4a[−2ax + sinh 2ax]
(134)
Z
sinh ax cosh bx dx = 1
b2− a2 [b cosh bx sinh ax − a cosh ax sinh bx]
is provided as is without warranty or representation about the accuracy, correctness or suitability of this material for any purpose This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License To view
a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.