Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a3 6 Tìm gó[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 2 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 1 B y= −x4+ 2x2+ 1 C y = x4+ 2x2+ 1 D y= x4+ 1
Câu 3 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−∞; −3).
C Hàm số nghịch biến trên khoảng (−3; 1) D Hàm số đồng biến trên khoảng (−3; 1).
Câu 4 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab2)= ln a + (ln b)2
b)= ln a
ln b.
C ln(ab)= ln a ln b D ln(ab2)= ln a + 2 ln b
Câu 5 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Không có tiệm cận ngang và có một tiệm cận đứng.
B Có một tiệm cận ngang và một tiệm cận đứng .
C Có một tiệm cận ngang và không có tiệm cận đứng.
D Không có tiệm cận.
Câu 6 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 7 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
6.
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 3
C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1
3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1
3.
Câu 9 NếuR2
0 f(x)= 4 thì R02[1
2f(x) − 2] bằng
Câu 10 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 11 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16
16
16π
16π
9 .
Trang 2Câu 12 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
A.
x= 5 + 2t
y= 5 + 3t
z= −1 + t
x= 1 + 2t
y= −1 + t
z= −1 + 3t
x= 5 + t
y= 5 + 2t
z= 1 + 3t
x= 1 + 2t
y= −1 + 3t
z= −1 + t
Câu 13 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 14 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 1
Câu 15 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng
3
2.
Câu 16 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 17 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 18 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 19 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng
A z+ z + 1 B |z|2+ 2|z| + 1 C z · z+ z + z + 1 D z2+ 2z + 1
Câu 21 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= √5 B |z1+ z2|= √13 C |z1+ z2|= 5 D |z1+ z2|= 1
Câu 22 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 23 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 24 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 25 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 26 F(x) là một nguyên hàm của hàm số y= xex2 Hàm số nào sau đây không phải là F(x)?
A F(x) = −1
2(2 − e
x 2
) B F(x) = 1
2e
x 2
+ 2 C F(x)= −1
2e
x 2
+ C D F(x) = 1
2(e
x 2
+ 5)
Câu 27 ChoR01 f(x)= 2R v `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Trang 3Câu 28 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)
A P(3; 1; 3) B N(4; 2; 1) C Q(1; 2; −5) D M(−2; 1; −8).
Câu 29 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =
1, tính tích phân I = R05
1+ f (x).
A I = 5
3.
Câu 30 BiếtR8
1 f(x)= −2; R4
1 f(x)= 3; R4
1 g(x)= 7 Mệnh đề nào sau đây sai?
A.R8
1 [ f (x)+ g(x)] = 10
C.R14[4 f (x) − 2g(x)]= −2 D.R48 f(x)= 1
Câu 31 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên
[a; b] Mệnh đề nào dưới đây đúng?
A.Rb
a k · f(x)= k[F(b) − F(a)]
B. Rb
a f(2x+ 3) = F(2x + 3)
b
a
C.Rba f(x)= F(b) − F(a)
D Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)
Câu 32 Tính tích phân I = R12xexdx
Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x+ y − z − 3 = 0 B x − y+ z + 6 = 0 C 6x + y − z − 6 = 0 D x + y − z + 1 = 0.
Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 1 C |w|min = 3
2. D |w|min = 2
Câu 35 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 37 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
Câu 38 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
Câu 39 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B z là số thuần ảo.
C z là một số thực không dương D |z|= 1
Trang 4Câu 40 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 41 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1 z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1
z2
+
z2
z1
2
√ 2
2 .
Câu 42 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 5
2 < |z| < 7
3
2 < |z| < 2 C. 1
2 < |z| < 3
2. D 2 < |z| <
5
2.
Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
2 + C
dx = (2x+ 1)3
Câu 44 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −2x4+ 4x2 B y= x3− 3x2
C y= −x4+ 2x2 D y= −x4+ 2x2+ 8
Câu 45 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 46 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 48 Cho bất phương trình 3
√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình đúng với mọi x ∈ [ 1; 3].
B Bất phương trình đúng với mọi x ∈ (4;+∞)
C Bất phương trình vô nghiệm.
D Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
Câu 49 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Trang 5HẾT