Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC A1B1C1 có AB = a, AC = 2a, AA1 = 2a √ 5 và B̂[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a
√ 15
a
√ 5
√ 15
Câu 2 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A −1
1
2
3.
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x + y + 2z = 0 B (P) : x − y − 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x − y + 2z = 0.
Câu 4 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 5 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A ln 2 − 1
1
1
2.
Câu 6 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A −2 < m < 2 B m= 2 C 0 < m < 2 D −2 ≤ m ≤ 2.
Câu 7 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; 2) D I(0; 1; −2).
Câu 9 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = 1πxπ−1
Câu 10 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 11 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= lnx B F′(x)= −1
x2 C F′(x)= 1
′
(x)= 2
x2
Câu 12 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 1
18
9
4
35.
Trang 2Câu 13 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 14 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A. 2
√
3
√ 2
√ 3
√ 2a
Câu 15 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2 bằng
Câu 16 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; −2; 3) B (−1; 2; 3) C (1; 2; −3) D (−1; −2; −3).
Câu 17 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 18 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009i D (1+ i)2018 = 21009
Câu 19 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z · z = a2− b2 B z+ z = 2bi C |z2|= |z|2 D z − z= 2a
Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z+ z + 1 C z2+ 2z + 1 D z · z+ z + z + 1
Câu 21 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 5
√
34
√ 34
Câu 22 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Không có số nào B 0 và 1 C Chỉ có số 1 D C.Truehỉ có số 0.
Câu 23 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 24 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √48 B |w|= √85 C |w|= 4√5 D |w|= 6√3
Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
A −21008 B −21008+ 1 C −22016 D 21008
Câu 26 ChoR1
0 f(x)= 2R v `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 27 Giá trị củaR0
−1ex+1dxbằng
Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x − 2)2+ y2+ z2= 9 B (x − 2)2+ y2+ z2 = 3
C (x+ 2)2+ y2+ z2= 3 D (x+ 2)2+ y2+ z2 = 9
Câu 29 Tích phân I = R2
0 (2x − 1) có giá trị bằng:
Trang 3Câu 30 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (3; 1; 4) B (3; −1; −4) C (−3; −1; 4) D (−3; −1; −4).
Câu 31 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= − 1
Câu 32 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng
qua I, song song với mặt phẳng (ABC) có phương trình là:
A x − 1= 0 B z − 1= 0 C x+ y + z − 3 = 0 D y − 1= 0
Câu 33 BiếtR18 f(x)= −2; R4
1 f(x)= 3; R4
1 g(x)= 7 Mệnh đề nào sau đây sai?
A.R8
4 f(x)= −5
C.R4
1 [ f (x)+ g(x)] = 10
Câu 34 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 35 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 2 C |w|min = 3
2. D |w|min = 1
Câu 38 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
Câu 39 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 41 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
2;
9 4
!
4;
5 4
!
4
!
Câu 43 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Trang 4A − ln 2 B 0 C 1 D ln 2.
Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 45 Tính đạo hàm của hàm số y= log4
√
x2− 1
A y′ = x
(x2− 1)log4e. B y
2(x2− 1) ln 4. C y
(x2− 1) ln 4. D y
x2− 1 ln 4
Câu 46 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −2x4+ 4x2 C y= −x4+ 2x2+ 8 D y= x3− 3x2
Câu 47 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a < 1 thì ax > ay
⇔ x< y B Nếu a > 0 thì ax = ay
⇔ x= y
C Nếu a > 1 thì ax > ay ⇔ x> y D Nếu a > 0 thì ax > ay ⇔ x< y
Câu 49 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 B m > 2 hoặc m < −1 C m < −2 D m > 1 hoặc m < −1
3.
Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3√ 15
a3√ 15
a3√ 5
Trang 5HẾT