Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y = log5x tại điểm có hoành độ[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5− 1+ 1
5 ln 5 + 1 − 1
ln 5.
C y= x
5 ln 5 −
1
ln 5.
Câu 2 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
A y= 3x+ 1
Câu 3 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x
A S = 1
6.
Câu 4 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 5 Hàm số nào sau đây không có cực trị?
Câu 6 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 7 Công thức nào sai?
Câu 8 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) B Hàm số nghịch biến trên R.
C Hàm số nghịch biến trên (0;+∞) D Hàm số đồng biến trên R.
Câu 9 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [22;+∞) B (7
4;+∞)
C (7
4; 2]S[22;+∞) D [7
4; 2]S[22;+∞)
Câu 10 Biết
5
R
1
dx 2x − 1 = ln T Giá trị của T là:
Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3
C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1
3. D (S ) : (x − 2)
2+ (y − 1)2+ (z + 1)2= 3
Trang 2Câu 12 Đạo hàm của hàm số y= log√
2
3x − 1 là:
A y′ = 2
3x − 1
ln 2
3x − 1
ln 2
(3x − 1) ln 2. D y
(3x − 1) ln 2.
Câu 13 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 14 Cho hàm số y =
x
3
− mx+ 5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 15 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 16 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi
K, I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a√5
√
√ 15
Câu 17 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A |z2|= |z|2 B z+ z = 2bi C z · z= a2− b2 D z − z= 2a
Câu 18 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 19 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 20 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009i B (1+ i)2018 = 21009 C (1+ i)2018 = −21009i D (1+ i)2018 = −21009
Câu 21 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 22 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là 3 và phần ảo là 2i B Phần thực là3 và phần ảo là 2.
C Phần thực là−3 và phần ảo là −2i D Phần thực là −3 và phần ảo là−2.
Câu 23 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 24 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 26 Đồ thị như hình bên là đồ thị của hàm số nào?
A y= 2x − 1
2x+ 1
x+ 1 .
Câu 27 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3
3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R
Trang 3Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:
Câu 29 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A loga1= a và logaa= 0 B logaxn= log
a
1 n
x, (x > 0, n , 0)
C logaxcó nghĩa với ∀x ∈ R D loga(xy)= logax.logay
Câu 30 Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y= x2+ 2x
x −1 là:
Câu 31 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)
A.
√
5
2
√ 10
√ 3
4 .
Câu 32 Với giá trị nào của tham số m thì hàm số y = 2x − 3
x+ m2 đạt giá trị lớn nhất trên đoạn [1; 3] bằng 1
4 :
Câu 33 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
2a3√ 3
3√
3
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
2
√ 2
2 .
Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4
!
4;
5 4
!
4;+∞
!
Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
5
2 < |z| < 7
1
2 < |z| < 3
3
2 < |z| < 2
Câu 38 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
Câu 39 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Trang 4Câu 40 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 42 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min = 1 B |w|min = 3
2. C |w|min = 1
2. D |w|min= 2
Câu 43 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 45 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m < −2 B m > 2 hoặc m < −1 C m > 1 hoặc m < −1
3 D m > 1.
Câu 46 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 48 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRl + 2πR2 B St p = πRh + πR2 C St p = 2πRl + 2πR2 D St p = πRl + πR2
Câu 49 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. a
√
15
3a√6
3a√6
3a√30
Câu 50 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Trang 5HẾT