Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x − 1 1 = y + 2 −[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x − y + 2z = 0 B (P) : x + y + 2z = 0 C (P) : x − y − 2z = 0 D (P) : x − 2y − 2 = 0.
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(1; 0; 3) B A(0; 2; 3) C A(1; 2; 0) D A(0; 0; 3).
Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 4 Tìm nghiệm của phương trình 2x = (√3)x
Câu 5 Cho a > 0 và a , 1 Giá trị của alog √
a 3bằng?
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2).
Câu 7 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
1
2
3.
Câu 8 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Không có tiệm cận ngang và có một tiệm cận đứng.
B Có một tiệm cận ngang và một tiệm cận đứng .
C Không có tiệm cận.
D Có một tiệm cận ngang và không có tiệm cận đứng.
Câu 9 Phần ảo của số phức z= 2 − 3i là
Câu 10 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= lnx B F′(x)= 2
x2 D F′(x)= 1
x.
Câu 11 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1= (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n2 = (1; −1; 1)
Câu 12 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; −2; 3) B (1; 2; −3) C (−1; 2; 3) D (−1; −2; −3).
Câu 13 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 14 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
Trang 2Câu 15 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 16 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
11
3 .
Câu 17 Với mọi số phức z, ta có |z+ 1|2bằng
A z · z+ z + z + 1 B z+ z + 1 C |z|2+ 2|z| + 1 D z2+ 2z + 1
Câu 18 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 19 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 20 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Không có số nào B 0 và 1 C C.Truehỉ có số 0 D Chỉ có số 1.
Câu 21 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009i B (1+ i)2018 = −21009 C (1+ i)2018 = −21009i D (1+ i)2018 = 21009
Câu 22 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 23 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z= z B z là số thuần ảo C z= 1
Câu 24 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là−3 và phần ảo là −2i B Phần thực là −3 và phần ảo là−2.
C Phần thực là3 và phần ảo là 2 D Phần thực là 3 và phần ảo là 2i.
Câu 25 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 26 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng
tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là
A 3x+ 2y + z − 4 = 0 B 3x − 2y+ z − 12 = 0
C 3x − 2y+ z + 4 = 0 D 3x − 2y+ z − 4 = 0
Câu 27 Biết
1 R 0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x − 2)2+ y2+ z2= 9 B (x+ 2)2+ y2+ z2 = 3
C (x − 2)2+ y2+ z2= 3 D (x+ 2)2+ y2+ z2 = 9
Trang 3Câu 29 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
Câu 30 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 31 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x − y+ z + 6 = 0 B 6x + y − z − 6 = 0 C x + y − z − 3 = 0 D x+ y − z + 1 = 0
Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (3; 1; 1) B (3; 3; −1) C (1; 1; 3) D (−1; −1; −3).
Câu 33 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
2x+ 1 + C.
C.R f(x)dx= 1
2
√
Câu 34 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2.
Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
Câu 36 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 1
2 < |z| < 3
5
2 < |z| < 7
3
2 < |z| < 2 D 2 < |z| < 5
2.
Câu 38 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là số thuần ảo B Phần thực của z là số âm.
C z là một số thực không dương D |z|= 1
Câu 39 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 41 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Trang 4Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 43 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 45 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 46 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 48 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 49 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′
Tính giá trị cos α
A.
√
3
1
√ 5
√ 3
4 .
Câu 50 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = 5x +cos3xln 5. B y′ = (1 + 3 sin 3x)5x +cos3xln 5.
C y′ = (1 − 3 sin 3x)5x +cos3xln 5. D y′ = (1 − sin 3x)5x +cos3xln 5.
Trang 5HẾT