Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A a−[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A a−√3< b−√3 B. √5
a< √5
√
2> b√2 D ea > eb
Câu 2 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên R B Hàm số nghịch biến trên R.
C Hàm số nghịch biến trên (0;+∞) D Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
Câu 3 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 4 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
x −1 .
Câu 5 Cho số thực dươngm Tính I = Rm
0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 2
m+ 1). B I = ln(
m+ 2 2m+ 2). C I = ln(
m+ 1
m+ 2). D I = ln(
2m+ 2
m+ 2 ).
Câu 6 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′
Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0).
Câu 8 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
3 −
ln 2
2 . B F(
π
4)= π
4 + ln 2
2 . C F(
π
4)= π
3 + ln 2
2 . D F(
π
4)= π
4 −
ln 2
2 .
Câu 9 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?
A (3, 7; 3, 9)· B (3, 3; 3, 5)· C (3, 1; 3, 3)· D (3, 5; 3, 7)·.
Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
4.
Câu 11 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= −3 cos 3x B f (x)= −cos 3x
3 . C f (x)= 3 cos 3x D f (x)= cos 3x
Câu 12 Cho hàm số f (x)=
− 1
3x
3+ 1
2(2m+ 3)x2− (m2+ 3m)x + 2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Trang 2Câu 13 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A (2x+ 1)−
1
1
3 ln(2x+ 1)
C −2
3(2x+ 1)−
4
3(2x+ 1)−
4
3
Câu 14 Cho hàm số y = f (x) xác định trên tập R và có f′
(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho nghịch biến trên khoảng (3;+∞)
B Hàm số đã cho đồng biến trên khoảng (1; 4).
C Hàm số đã cho đồng biến trên khoảng (−∞; 3).
D Hàm số đã cho nghịch biến trên khoảng (1; 4).
Câu 15 Tính đạo hàm của hàm số y= 5x
A y′ = 5x
′ = x.5x−1 C y′ = 5xln 5 D y′ = 5x
Câu 16 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e
2
R
1
f(ln x)
Câu 17 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 18 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 19 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 20 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 21 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 22 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 23 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực dương.
C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số phức.
Câu 24 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
A −21008 B −21008+ 1 C 21008 D −22016
Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 26 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng
(−2; 3) Tính I= R−12[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4
Câu 27 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Trang 3Câu 28 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng
qua I, song song với mặt phẳng (ABC) có phương trình là:
A y − 1= 0 B x+ y + z − 3 = 0 C x − 1 = 0 D z − 1= 0
Câu 29 Tích phân I = R2
0 (2x − 1) có giá trị bằng:
Câu 30 ChoR1
0 f(x)= 2Rv `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng
tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là
A 3x − 2y+ z + 4 = 0 B 3x − 2y+ z − 12 = 0
C 3x − 2y+ z − 4 = 0 D 3x+ 2y + z − 4 = 0
Câu 32 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F′
(x)= f (x) B F(x)= f′
(x)+ C = f (x) D F(x)= f′
(x)+ C
Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (−1; −1; −3) B (3; 3; −1) C (1; 1; 3) D (3; 1; 1).
Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 5
2 < |z| < 4 B 3 < |z| < 5 C. 3
2 < |z| < 3 D. 1
2 < |z| < 2
Câu 36 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
3
2.
Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 3
2. B |w|min= 1
2. C |w|min = 2 D |w|min = 1
Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2.
Câu 39 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 41 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 2 B |z|= 1
Trang 4Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1 z2
+
z2 z1
3√2
2 .
Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 44 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 45 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 B m > 2 hoặc m < −1 C m < −2 D m > 1 hoặc m < −1
3.
Câu 46 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 47 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
√ 5
1
√ 15
10 .
Câu 49 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
4.
Câu 50 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 1
4ln 2+ 3π
6π
1
5ln 2+ 6π
5 . D ln 2+ 6π
5 .
Trang 5HẾT