Với điều kiện nào của a đê hàm số đồng biến trên R Đáp án đúng: A Giải thích chi tiết: Với điều kiện nào của a đê hàm số đồng biến trên R Hướng dẫn giải Câu 6.. Đáp án đúng: B Giải thí
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP GIẢI TÍCH
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 014.
Câu 1 Có bao nhiêu số nguyên dương sao cho ứng với mỗi số đó bất phương trình có nghiệm nguyên và số nghiệm nguyên không vượt quá ?
Đáp án đúng: C
Câu 2
Cho hàm số có đồ thị như hình vẽ sau
Gọi là giá trị nhỏ nhất của tham số để đồ thị hàm số có số điểm cực trị ít nhất Tìm mệnh đề đúng trong các mệnh đề sau?
Đáp án đúng: D
Trang 2
;
Bảng biến thiên:
Từ bảng biến thiên của hàm số suy ra hàm số có số điểm cực trị ít nhất khi và chỉ khi
Đáp án đúng: A
Giải thích chi tiết: Cho số phức Phần thực của số phức là
Hướng dẫn giải
Vậy phần thực là
Vậy chọn đáp án A.
Câu 4
Trang 3A B C D .
Đáp án đúng: B
Câu 5 Với điều kiện nào của a đê hàm số đồng biến trên R
Đáp án đúng: A
Giải thích chi tiết: Với điều kiện nào của a đê hàm số đồng biến trên R
Hướng dẫn giải
Câu 6 Cho số thực thỏa mãn điều kiện Mệnh đề nào sau đây đúng?
Đáp án đúng: C
Giải thích chi tiết:
Ta thấy
Câu 7 Số lượng của loại vi khuẩn A trong một phòng thí nghiệm ước tính theo công thức trong đó
là số lượng vi khuẩn A ban đầu, là số lượng vi khuẩn A có sau phút Biết sau phút thì số lượng vi khuẩn
A là nghìn con Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng vi khuẩn A là triệu con?
A phút B phút C phút D phút.
Đáp án đúng: D
Giải thích chi tiết: Vì sau phút thì số lượng vi khuẩn A là nghìn con nên ta có phương trình
con
Câu 8 Cho số phức Điểm biểu diễn hình học của số phức liên hợp của trên mặt phẳng là
Trang 4C D
Đáp án đúng: B
Giải thích chi tiết: Cho số phức Điểm biểu diễn hình học của số phức liên hợp của trên mặt
Lời giải
Vậy điểm biểu diễn hình học của số phức liên hợp của trên mặt phẳng là
Câu 9
Cho hàm số liên tục trên , có bảng biến thiên như hình sau:
Trong các mệnh đề sau, mệnh đề nào sai?
A Hàm số nghịch biến trên mỗi khoảng
B Hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
C Hàm số có hai điểm cực trị.
D Đồ thị hàm số có đúng một đường tiệm cận.
Đáp án đúng: B
Giải thích chi tiết: (Chuyên Lê Thánh Tông 2019) Cho hàm số liên tục trên , có bảng biến thiên như hình sau:
Trong các mệnh đề sau, mệnh đề nào sai?
A Hàm số có hai điểm cực trị.
B Hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
C Đồ thị hàm số có đúng một đường tiệm cận.
D Hàm số nghịch biến trên mỗi khoảng
Lời giải
Dựa vào BBT ta thấy hàm số không có GTLN, GTNN
Câu 10 Cho hàm số có đồ thị là Phương trình tiếp tuyến của tại điểm
Trang 5Đáp án đúng: D
Giải thích chi tiết: Cho hàm số có đồ thị là Phương trình tiếp tuyến của tại điểm
là:
Lời giải
Phương trình tiếp tuyến của tại điểm là:
Câu 11 Nhà anh An có mảnh ruộng hình vuông với diện tích 2000 và số tiền tiết kiệm 200 triệu Nhà anh muốn chuyển đổi sang ao nuôi tôm, biết công đào ao là 40000 đồng mỗi , kích thước ao nuôi tôm nhà anh
An là
Đáp án đúng: D
Giải thích chi tiết: Với diện tích 2000 thì độ dài cạnh hình vuông là
Với số tiền 200 triệu khối lượng đất có thể đào là
Thể tích của ao nuôi là khi đó chiều sâu của ao nuôi là
Kích thước ao nuôi là: ; ; 2,5
Câu 12 Gọi , là hai nghiệm phức của phương trình Khi đó bằng
Đáp án đúng: B
Giải thích chi tiết: Gọi , là hai nghiệm phức của phương trình Khi đó bằng
Trang 6A B C D .
Lời giải
Câu 13 Biết , trong đó , là các số nguyên dương Giá trị của biểu thức
là
Đáp án đúng: A
Suy ra:
Câu 14 Tính tích phân bằng cách đặt , mệnh đề nào dưới đây đúng?
Đáp án đúng: A
Trang 7Câu 15 Cho biết sự tăng dân số được tính theo công thức trong đó là dân số của năm lấy làm mốc, là dân số sau năm và là tỷ lệ tăng dân số hàng năm Đầu năm , dân số của tỉnh là
người, tính đến đầu năm dân số tỉnh là người Nếu tỉ lệ tăng dân số hàng năm giữ nguyên thì đầu năm dân số tỉnh khoảng bao nhiêu người?
Đáp án đúng: A
Câu 16 Có bao nhiêu giá trị nguyên của tham số thuộc đoạn để tồn tại các số thực dương
Đáp án đúng: B
Giải thích chi tiết: Ta có:
Để phương trình có nghiệm thì:
Vậy có giá trị nguyên của tham số thỏa mãn yêu cầu bài toán
Câu 17 Anh Bình vay ngân hàng tỷ đồng để xây nhà và trả dần mỗi năm triệu đồng Kỳ trả đầu tiên là sau khi nhận vốn với lãi suất trả chậm một năm Hỏi sau mấy năm anh Bình mới trả hết nợ đã vay?
Đáp án đúng: B
Giải thích chi tiết: Kỳ trả nợ đầu tiên là sau khi nhận vốn nên đây là bài toán vay vốn trả góp đầu kỳ.
Gọi là số tiền vay ngân hàng, là số tiền trả trong mỗi chu kỳ, là lãi suất trả chậm (tức là lãi suất cho số tiền còn nợ ngân hàng) trên một chu kỳ, là số kỳ trả nợ
Số tiền còn nợ ngân hàng (tính cả lãi) trong từng chu kỳ như sau:
+ Đầu kỳ thứ nhất là
……
Trang 8+ Theo giả thiết quy nạp, đầu kỳ thứ là
Vậy số tiền còn nợ (tính cả lãi) sau chu kỳ là
Trở lại bài toán, để sau năm (chu kỳ ở đây ứng với một năm) anh Bình trả hết nợ thì ta có
Vậy phải sau năm anh Bình mới trả hết nợ đã vay
Câu 18
Cho hàm số có bảng xét dấu của như sau :
Hàm số đồng biến trên khoảng nào dưới đây ?
Đáp án đúng: C
Giải thích chi tiết: Cho hàm số có bảng xét dấu của như sau :
Hàm số đồng biến trên khoảng nào dưới đây ?
Lời giải
Ta có bảng xét dấu như sau :
Căn cứ vào bảng biến thiên ta có hàm số đồng biến trên
Câu 19 Có bao nhiêu giá trị nguyên của tham số m để đường thẳng cắt đồ thị hàm số tại
Đáp án đúng: A
Trang 9Giải thích chi tiết: Có bao nhiêu giá trị nguyên của tham số m để đường thẳng cắt đồ thị hàm số
tại hai điểm phân biệt sao cho ?
A B C D
Lời giải
Điều kiện:
Xét phương trình hoành độ giao điểm: (1)
(2)
Mà không là nghiệm của phương trình (2) luôn có 2 nghiệm phân biệt, khác 1
luôn có 2 nghiệm phân biệt đường thẳng và đồ thị đã cho luôn cắt nhau tại hai điểm phân biệt
Ta có
(4)
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Câu 20 Cho số thực a>0,a≠1 giá trị của loga 1
a5 bằng
Đáp án đúng: C
Câu 21 Tìm tập nghiệm S của phương trình
Đáp án đúng: A
Câu 22 Cho hàm số y= x+2m
x+1 ( m là tham số thực) thỏa mãn max [0;2] y=4 Mệnh đề nào dưới đây đúng?
A 0≤ m<4 B m ≥6 C m<0 D 4 ≤ m<6
Đáp án đúng: A
Trang 10Câu 23 Cho hàm số với là tham số thực Tìm tất cả các giá trị để hàm số đồng biến trên khoảng
Đáp án đúng: A
Câu 24 Trong mặt phẳng tọa độ cho điểm Phép vị tự tâm tỉ số biến điểm thành điểm nào trong các điểm sau?
Đáp án đúng: B
Câu 25 Cho tập hợp CℝA=[− 3;√8), CℝB=(−5;2)∪(√3;√11). Tập Cℝ(A ∩B)là:
C (−5 ;√11) D (−3;2)∪(√3;√8).
Đáp án đúng: C
Câu 26 Họ tất cả các nguyên hàm của hàm số là
Đáp án đúng: D
Câu 27 Trong mặt phẳng tọa độ , số phức có tập hợp biểu diễn là một đường thẳng Môđun của bằng
Đáp án đúng: C
Giải thích chi tiết:
.
Điều kiện
Ta có
Lấy môđun hai vế ta được
(*)
Câu 28
Cho hàm số liên tụctrên có đồ thị như sau:
Trang 11Giá trị lớn nhất của hàm số trênđoạn bằng bao nhiêu?
Đáp án đúng: D
Giải thích chi tiết: Gọi , là hai điểm cực trị của hàm số
đoạn như sau:
Vậy giá trị lớn nhất của hàm số trên đoạn bằng
Trang 12Câu 29 Có bao nhiêu số nguyên để hàm số có giá trị nhỏ nhất trên là nhỏ nhất.
Đáp án đúng: B
Giải thích chi tiết: [2D1-3.1-3] Có bao nhiêu số nguyên để hàm số có giá trị nhỏ nhất trên
là nhỏ nhất
A B C D .
Lời giải
FB tác giả: Lê Đức
Ta tìm để phương trình có nghiệm trong đoạn hay tìm để đường thẳng cắt đồ thị hàm số tại điểm có hoành độ thuộc đoạn
Câu 30 Cho , và số thực m, n Hãy chọn câu đúng.
Đáp án đúng: B
Câu 31 Tính tích phân:
Đáp án đúng: A
Đáp án đúng: D
Trang 13Câu 33 Một người gửi 150.000.000 đồng vào một ngân hàng với lãi suất /năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo Hỏi sau 2 năm người đó nhận được số tiền là bao nhiêu gồm gốc và lãi ? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra
Đáp án đúng: A
Câu 34 Trong trường số phức phương trình có mấy nghiệm?
Đáp án đúng: D
Giải thích chi tiết: Trong trường số phức phương trình có mấy nghiệm?
Câu 35 Cho hình bình hành Tập hợp các điểm thỏa mãn đẳng thức là:
Đáp án đúng: D
Câu 36
Đáp án đúng: A
Câu 37 Số lượng một loại vi khuẩn tuân theo công thức , trong đó là số lượng vi khuẩn ban đầu,
là tỉ lệ tăng trưởng và là thời gian Biết rằng số lượng vi khuẩn ban đầu là con và sau hai giờ là con Số tự nhiên nhỏ nhất để sau giờ số lượng vi khuẩn ít nhất là con là
Đáp án đúng: C
Câu 38
Cho hàm số có đạo hàm liên tục trên và có bảng biến thiên dưới đây
Gọi là tập hợp tất cả giá trị nguyên dương của tham số sao cho hàm số
nghịch biến trên khoảng Tổng tất cả các phần tử thuộc bằng
Đáp án đúng: A
Câu 39 Phương trình trên tập số phức có các nghiệm là:
Trang 14C hoặc D hoặc
Đáp án đúng: D
Giải thích chi tiết: Phương trình trên tập số phức có các nghiệm là:
Hướng dẫn giải:
Ta chọn đáp án A
Câu 40 Một người gửi số tiền 2 triệu đồng vào một ngân hàng với lãi suất tháng Biết rằng nếu người
đó không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi
đó là lãi kép) Số tiền người đó lãnh được sau hai năm, nếu trong khoảng thời gian này không rút tiền ra và lãi suất không đổi là:
Đáp án đúng: C
Giải thích chi tiết: Một người gửi số tiền 2 triệu đồng vào một ngân hàng với lãi suất tháng Biết rằng nếu người đó không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép) Số tiền người đó lãnh được sau hai năm, nếu trong khoảng thời gian này không rút tiền ra và lãi suất không đổi là:
Hướng dẫn giải
Gọi số tiền gửi vào vào là đồng, lãi suất là /tháng
° Cuối tháng thứ nhất: số tiền lãi là: Khi đó số vốn tích luỹ đượclà:
° Cuối tháng thứ hai: số vốn tích luỹ được là:
° Tương tự, cuối tháng thứ n: số vốn tích luỹ đượclà:
Áp dụng công thức trên với , thì số tiền người đó lãnh được sau 2 năm (24 tháng) là:
triệu đồng