Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A ac < 0 B ab < 0 C ad > 0 D bc > 0
Câu 2 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
5a
√ 3a
2a
√
a
√
5.
Câu 3 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 4 Tính I =R1
0
3
√ 7x+ 1dx
A I = 20
28.
Câu 5 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 6 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
3πR3
Câu 7 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
A. √2π
√
√ 3π
Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (2; −1; 2) B (−2; −1; 2) C (−2; 1; 2) D (2; −1; −2).
Câu 9 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 10 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
√ 2
a
√ 2
Câu 11 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Trang 2Câu 12 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 13 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 14 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 15 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2và trục hoành quanh trục Ox
A V = 512π
5.
Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x − 1)2+ (y − 4)2+ (z + 2)2 = 40 B (x+ 1)2+ (y + 4)2+ (z − 2)2= 40
C (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40 D (x − 1)2+ (y − 4)2+ (z + 2)2= 10
Câu 17 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 19 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 20 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 21 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 22 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 23 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 24 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 25 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 1 B |z1+ z2|= √13 C |z1+ z2|= 5 D |z1+ z2|= √5
Câu 26 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
A.
x= 5 + 2t
y= 5 + 3t
z= −1 + t
x= 1 + 2t
y= −1 + t
z= −1 + 3t
x= 1 + 2t
y= −1 + 3t
z= −1 + t
x= 5 + t
y= 5 + 2t
z= 1 + 3t
Câu 27 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Trang 3Câu 28 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 29 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′= ln3
xln3.
Câu 30 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 31 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 32 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
5
1
4
3.
Câu 33 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
3
√
√ 2
2√3
3 a.
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 4)2 B P=
|z|2− 42 C P =
|z|2− 22 D P = (|z| − 2)2
Câu 36 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B. 3
2 ≤ |z| ≤ 2. C |z| <
1
1
2 < |z| < 3
2.
Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 1
3
Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 39 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 40 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 41 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
Trang 4Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2= 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
97
√ 85
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 − 3t
x= 1 + 2t
y= −2 + 3t
x= 1 − 2t
y= −2 + 3t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t.
Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 45 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Câu 46 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 47 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P = 2abc
Câu 48 Cho bất phương trình 3
√
A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B Bất phương trình đúng với mọi x ∈ [ 1; 3].
C Bất phương trình đúng với mọi x ∈ (4;+∞)
D Bất phương trình vô nghiệm.
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 5 = 0 B −2x − y+ 4z − 8 = 0
C 2x+ y − 4z + 1 = 0 D 2x+ y − 4z + 7 = 0
Câu 50 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
15
πa2√ 17
πa2√ 17
πa2√ 17
Trang 5HẾT