Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 2 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
R
y= 1
R
y= −1
2.
Câu 3 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A log x > log y B ln x > ln y C logax> logay D log 1
a
x> log1
a y
Câu 4 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 5 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên R B Hàm số nghịch biến trên R.
C Hàm số nghịch biến trên (0;+∞) D Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
Câu 6 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5+ 1 − 1
5 ln 5 + 1
C y= x
5 ln 5− 1+ 1
5 ln 5 −
1
ln 5.
Câu 7 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 8 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A ad > 0 B bc > 0 C ab < 0 D ac < 0.
Câu 9 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
A. 3
√
3
√ 3
2) C 1 (m2) D 3√3(m2)
Câu 10 Tính nguyên hàmR cos 3xdx
A. 1
3sin 3x+ C
Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. B (S ) : (x − 2)
2+ (y − 1)2+ (z + 1)2= 3
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 D (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1
3.
Câu 12 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y= 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A ln 2 − 1
1
1
2. D ln 2+ 1
2.
Trang 2Câu 13 Cho hình lập phương ABCD.A′
B′C′D′ có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
4.
Câu 14 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a√6, S B =
a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 15 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 1
2
1
Câu 16 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A π√3.a2 B. π√3.a2
π√2.a2
2π
√ 2.a2
Câu 17 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 18 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 19 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số phức.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực dương.
Câu 20 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 21 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 22 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
Câu 23 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 5
√
34
√ 34
3 . D |z|= √34
Câu 24 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A m ≥ 0 hoặc m ≤ −1 B 0 ≤ m ≤ 1 C −1 ≤ m ≤ 0 D m ≥ 1 hoặc m ≤ 0 Câu 25 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường tròn nội tiếp tam giác ABC bằng
Câu 27 Với giá trị nào của tham số m thì hàm số y = 2x − 3
x+ m2 đạt giá trị lớn nhất trên đoạn [1; 3] bằng 1
4 :
Trang 3Câu 28 Họ nguyên hàm của hàm số y= (x − 1)ex là:
A xex−1+ C B xex+ C C (x − 1)ex+ C D (x − 2)ex+ C
Câu 29 Họ nguyên hàm của hàm số f (x)= (2 ln x+ 3)3
A. (2 ln x+ 3)4
Câu 30 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2 Khi t= 0 thì vận tốc của vật là 30 (m/s) Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
Câu 31 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường
y= 1
x, x= 1, x = 2 và trục hoành
A V = 3π
2 .
Câu 32 Cho hình chóp tứ giác S ABCD có đáy là hình vuông cạnh bằng a√2, tam giác S AB vuông cân tại S và mặt phẳng (S AB) vuông góc với mặt phẳng đáy Khoảng cách từ A đến mặt phẳng (S CD) là
√ 6
a
√ 10
a
√ 2
Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình
A (x+ 1)2+ (y − 1)2+ (z − 2)2= √6 B (x+ 1)2+ (y − 1)2+ (z − 2)2 = 24
C (x+ 1)2+ (y − 1)2+ (z − 2)2= 6 D (x − 1)2+ (y + 1)2+ (z + 2)2 = 6
Câu 34 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;
5 4
!
4
!
4;+∞
!
Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 38 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 39 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
+ 1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
3√2
2 .
Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Trang 4Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 41 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 1
2 < |z| < 3
5
2 < |z| < 7
2. D 2 < |z| <
5
2.
Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay ⇔ x< y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax = ay ⇔ x= y D Nếu a > 1 thì ax > ay ⇔ x> y
Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R e2xdx=e2x
dx = (2x+ 1)3
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(2
3;
7
3;
21
7
3;
10
3 ;
31
5
3;
11
3 ;
17
4
3;
10
3 ;
16
3 ).
Câu 46 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3√ 15
a3√ 15
a3√ 5
Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
64.
Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 49 Cho hình lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 6a3√
3
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 5 = 0 B 2x+ y − 4z + 7 = 0
C 2x+ y − 4z + 1 = 0 D −2x − y+ 4z − 8 = 0
Trang 5HẾT