Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếux > 2 thìy < −15 B Nếux= 1 thì y = −3
C Nếu 0 < x < π thì y > 1 − 4π2 D Nếu 0 < x < 1 thì y < −3.
Câu 2 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5 − 1+ 1
ln 5.
C y= x
5 ln 5−
1
5 ln 5 + 1 − 1
ln 5.
Câu 3 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A loga(x − 2)2 = 2loga(x − 2) B alogax = x
C logax2 = 2logax D loga2x= 1
2logax.
Câu 4 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 5 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường hypebol B Đường tròn C Đường elip D Đường parabol.
Câu 6 Công thức nào sai?
Câu 7 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (2; −1; −2) B (2; −1; 2) C (−2; −1; 2) D (−2; 1; 2).
Câu 9 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
9.
Câu 10 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 11 Cho hình hộp chữ nhật ABCD.A′
B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
3
a
√ 2
a
√ 3
√ 3
Câu 12 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông
với cạnh huyền bằng 2a Tính thể tích của khối nón
A. π.a3
2π.a3
π√2.a3
4π√2.a3
Trang 2Câu 13 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. π√2.a2
π√3.a2
2π
√ 2.a2
√ 3.a2
Câu 14 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A −2 ≤ m ≤ 2 B m= 2 C −2 < m < 2 D 0 < m < 2.
Câu 15 Biết
5 R 1
dx 2x − 1 = ln T Giá trị của T là:
Câu 16 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
3.
Câu 17 Kết quả nào đúng?
A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −cos2x sin x + C
C.R sin2xcos x= sin3x
Câu 18 Tìm tất cả các giá trị của tham số m để đường thẳng y= x + m cắt đồ thị hàm số y = 3+ 2x
x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
A 1 < m , 4 B −4 < m < 1 C ∀m ∈ R D m < 3
2.
Câu 19 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
A. 4
√
3π
√
3.
Câu 20 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường hypebol B Đường parabol C Đường tròn D Đường elip.
Câu 21 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 22 Cho hình phẳng (D) giới hạn bởi các đường y= √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành
A V = π
Câu 23 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây đúng?
A |→−u |= 1 B |→−u |= 3 C |→−u |= √3 D |→−u | = 9
Câu 24 Công thức nào sai?
Câu 25 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
Trang 3Câu 26 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:
Câu 27 Tính tích phân I = Re
1
lnnx
x dx, (n > 1)
A I = 1
1
n −1.
Câu 28 Cho hàm số y= 5x 2 −3x Tính y′
A y′= (x2− 3x)5x 2 −3xln 5 B y′ = 5x 2 −3xln 5
Câu 29 Tập xác định của hàm số y= logπ(3x− 3) là:
Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường tròn nội tiếp tam giác ABC bằng
Câu 31 Với giá trị nào của tham số m thì hàm số y = 2x − 3
x+ m2 đạt giá trị lớn nhất trên đoạn [1; 3] bằng 1
4 :
Câu 32 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x+ 5, tiếp tuyến tại A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C)
A. 3
7
5
9
4.
Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình
hành
A (1; 1; 3) B (−1; 1; 1) C (1; −2; −3) D (1; −1; 1).
Câu 34 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 35 Tính đạo hàm của hàm số y= 5x +cos3x
A y′= 5x +cos3xln 5 B y′ = (1 − sin 3x)5x +cos3xln 5
C y′= (1 − 3 sin 3x)5x +cos3xln 5. D y′ = (1 + 3 sin 3x)5x +cos3xln 5
Câu 36 Cho hình lăng trụ đứng ABCD.A′
B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ = 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A. 1
√ 5
√ 3
√ 3
4 .
Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y + 2)2+ (z − 4)2= 1 B (x − 1)2+ (y − 2)2+ (z − 4)2 = 2
C (x − 1)2+ (y − 2)2+ (z − 4)2= 1 D (x − 1)2+ (y − 2)2+ (z − 4)2 = 3
Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c
Câu 39 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Trang 4Câu 40 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay
⇔ x< y B Nếu a > 1 thì ax > ay
⇔ x> y
C Nếu a < 1 thì ax > ay
⇔ x< y D Nếu a > 0 thì ax = ay
⇔ x= y
Câu 41 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. a
√
15
3a√6
3a√30
3a√6
Câu 42 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
B.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
D.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R 2
|x2− 2x|dx
Câu 43 Biết
π 2 R 0 sin 2xdx= ea Khi đó giá trị a là:
Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A m < 0 B −4 ≤ m ≤ −1 C m > −2 D −3 ≤ m ≤ 0.
Câu 45 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 46 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3
√ 5
a3
√ 15
a3
√ 15
Câu 48 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 400π
√
3
250π√3
125π√3
500π√3
Câu 49 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = √ 1
x2− 1 ln 4.
B y′ = x
2(x2− 1) ln 4. C y
(x2− 1) ln 4. D y
(x2− 1)log4e.
Câu 50 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Trang 5HẾT