1. Trang chủ
  2. » Tất cả

Đề kiểm tra thpt môn toán (949)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Không có thông tin
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Không có thông tin
Định dạng
Số trang 5
Dung lượng 125,01 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A 5[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A. √5

a< √5

2 > b√2 C a−√3 < b−√3 D ea > eb

Câu 2 Bất đẳng thức nào sau đây là đúng?

A (√3 − 1)e < (√3 − 1)π B 3π < 2π

Câu 3 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm

số y= 3x2+ log3x+ m là:

Câu 4 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < 1 thì y < −3 B Nếux > 2 thìy < −15.

C Nếu 0 < x < π thì y > 1 − 4π2 D Nếux= 1 thì y = −3

Câu 5 Cho số thực dươngm Tính I = Rm

0

dx

x2+ 3x + 2 theo m?

A I = ln( m+ 2

2m+ 2). B I = ln(

2m+ 2

m+ 2 ). C I = ln(

m+ 2

m+ 1

m+ 2).

Câu 6 Công thức nào sai?

Câu 7 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (−2; 0; 0) B (0; −2; 0) C (0; 6; 0) D (0; 2; 0).

Câu 8 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 9 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 10 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng

Câu 11 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án dưới đây Hỏi hàm số đó là hàm số nào?

Câu 12 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích

toàn phần St p của hình nón đó

A St p = 5

4πa2 B St p = 1

4πa2 C St p = 3

4πa2 D St p = πa2

Câu 13 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn

3y−2x ≥ log5(x+ y2)?

Trang 2

Câu 14 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A M(0 ; 0 ; 2) B P(4 ; −1 ; 3) C N(1 ; 1 ; 7) D Q(4 ; 4 ; 2).

Câu 15 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

A. √1

2

3√10.

Câu 16 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

4.

Câu 17 Với mọi số phức z, ta có |z+ 1|2bằng

A z · z+ z + z + 1 B z2+ 2z + 1 C z+ z + 1 D |z|2+ 2|z| + 1

Câu 18 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 19 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 20 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 21 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 22 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là3 và phần ảo là 2 B Phần thực là −3 và phần ảo là−2.

C Phần thực là 3 và phần ảo là 2i D Phần thực là−3 và phần ảo là −2i.

Câu 23 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 24 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 25 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 26 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Câu 27 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 1

3.

Trang 3

Câu 28 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= 1

′ = ln3

x .

Câu 29 NếuR2

0 f(x)= 4 thì R02[1

2f(x) − 2] bằng

Câu 30 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−1; −2; −3) B (2; 4; 6) C (−2; −4; −6) D (1; 2; 3).

Câu 31 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= 2

x.

Câu 32 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

Câu 33 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:

A y′= πxπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = 1πxπ−1

Câu 34 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 36 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A 2 < |z| < 5

5

2 < |z| < 7

3

2 < |z| < 2 D. 1

2 < |z| < 3

2.

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1

z2

= 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. 3

2

2.

Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 39 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 40 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 2 C |w|min = 1 D |w|min = 3

2.

Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2√13 B T = 2

√ 85

√ 97

Trang 4

Câu 42 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| ≥ 1 B |A| > 1 C |A| < 1 D |A| ≤ 1.

Câu 43. R 6x5dxbằng

6x

6+ C D 6x6+ C

Câu 44 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 45 Tính đạo hàm của hàm số y= 2023x

A y′ = x.2023x−1 B y′ = 2023x

ln x C y′ = 2023x

ln 2023 D y′ = 2023x

Câu 46 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 47 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 48 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 49 Cho cấp số nhân (un) với u1= −1

2; u7= −32 Tìm q?

Câu 50 Với a là số thực dương tùy ý, log5(5a) bằng

A 1 − log5a B 5+ log5a C 5 − log5a D 1+ log5a

Trang 5

HẾT

Ngày đăng: 05/04/2023, 11:15