Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai? A loga2 x = 1 2 l[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A loga2x= 1
2= 2logax
C loga(x − 2)2 = 2loga(x − 2) D aloga x = x
Câu 2 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 2; 0) B (0; −2; 0) C (0; 6; 0) D (−2; 0; 0).
Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 4 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 3
3πR3 D πR3
Câu 5 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A logax> logay B log x > log y C ln x > ln y D log 1
a
x> log1
a y
Câu 6 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
R
R
y= 1
y= −1
2.
Câu 7 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) B Hàm số nghịch biến trên (0;+∞)
C Hàm số đồng biến trên R D Hàm số nghịch biến trên R.
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2 B m ≥ e−2 C m > 2e D m > e2
Câu 9 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 10 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng
MN có phương trình tham số là
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) tiếp xúc mặt cầu (S ) B (P) không cắt mặt cầu (S ).
C (P) đi qua tâm mặt cầu (S ) D (P) cắt mặt cầu (S ).
Câu 12 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Trang 2
Câu 13 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính
e 2
R
1
f(ln x)
Câu 14 Cho hàm số f (x)=
− 1
3x
3+ 1
2(2m+ 3)x2− (m2+ 3m)x +2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Câu 15 Cho hàm số y = f (x) xác định trên tập R và có f′
(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho đồng biến trên khoảng (−∞; 3).
B Hàm số đã cho đồng biến trên khoảng (1; 4).
C Hàm số đã cho nghịch biến trên khoảng (3;+∞)
D Hàm số đã cho nghịch biến trên khoảng (1; 4).
Câu 16 Tính đạo hàm của hàm số y= 5x
A y′ = 5xln 5 B y′ = 5x
′ = x.5x−1 D y′ = 5x
Câu 17 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z · z = a2− b2 B |z2|= |z|2 C z+ z = 2bi D z − z= 2a
Câu 18 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 19 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= √5 B |z1+ z2|= 5 C |z1+ z2|= 1 D |z1+ z2|= √13
Câu 20 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 21 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 22 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 23 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 24 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 25 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 29
29
11
11
13.
Câu 26 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Câu 27 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Trang 3Câu 28 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên).
Khoảng cách từ B đến mặt phẳng (S CD) bằng
√ 3
√ 2
2√3
3 a.
Câu 29 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng
3
4.
Câu 30 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
C.R f(x)= sinx + x2
Câu 31 Cho hàm số y = f (x) có đạo hàm f′(x)= (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 32 NếuR2
0 f(x)= 4 thì R02[1
2f(x) − 2] bằng
Câu 33 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1 z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
1
√ 2
Câu 35 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
A |A| < 1 B |A| > 1 C |A| ≥ 1 D |A| ≤ 1.
Câu 37 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 38 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 39 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1 B |w|min= 3
2. C |w|min = 1
2. D |w|min = 2
Câu 40 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
Trang 4Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 42 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là
Câu 43 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x B y′ = x.2023x−1 C y′ = 2023x
ln 2023
Câu 44 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(5; 5; 0) B M(−2; −6; 4) C M(2; −6; 4) D M(−2; 6; −4).
Câu 46 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x+ 4)2+ (y − 8)2 = 2√5 B (x − 4)2+ (y + 8)2 = 2√5
C (x − 4)2+ (y + 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 20
Câu 47 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 3
5 −
6
5+ 27
5 + 6
5 −
27
5 i.
Câu 48 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A m > −4 B −4 < m < −3 C −4 < m ≤ −3 D −4 ≤ m < −3.
Câu 49 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là
Câu 50 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(−1; 2; −3); R = 3 B I(1; 2; −3); R = 3 C I(1; 2; 3); R= 3 D I(1; −2; 3); R= 3
Trang 5HẾT