Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > e2 B m > 2e C m > 2 D m ≥ e−2
Câu 2 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A loga(x − 2)2 = 2loga(x − 2) B logax2= 2logax
C loga2x= 1
logax = x
Câu 3 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
A. 13
Câu 4 Bất đẳng thức nào sau đây là đúng?
A (√3 − 1)e < (√3 − 1)π B 3−e > 2−e
Câu 5 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếux= 1 thì y = −3 B Nếu 0 < x < 1 thì y < −3.
C Nếux > 2 thìy < −15 D Nếu 0 < x < π thì y > 1 − 4π2
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 7 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
4πR3
Câu 8 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 9 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
4.
Câu 11 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 12 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; −2; −1) B.→−n = (1; 2; 3) C.→−n = (1; 3; −2) D.→−n = (1; −2; 3)
Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) không cắt mặt cầu (S ) B (P) đi qua tâm mặt cầu (S ).
C (P) tiếp xúc mặt cầu (S ) D (P) cắt mặt cầu (S ).
Trang 2Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A I(−1; −2; 3) B K(3; 0; 15) C H(−2; −1; 3) D J(−3; 2; 7).
Câu 15 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= 2x − 2
−2x+ 3
1+ x
1 − 2x.
Câu 16 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 17 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B −1 ≤ m ≤ 0 C m ≥ 1 hoặc m ≤ 0 D m ≥ 0 hoặc m ≤ −1 Câu 18 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 19 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 20 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = 21009 C (1+ i)2018 = 21009i D (1+ i)2018 = −21009i
Câu 21 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 4√5 B |w|= 6√3 C |w|= √48 D |w|= √85
Câu 22 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số phức.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực dương.
Câu 23 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là−3 và phần ảo là −2i B Phần thực là −3 và phần ảo là−2.
C Phần thực là3 và phần ảo là 2 D Phần thực là 3 và phần ảo là 2i.
Câu 24 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z · z+ z + z + 1 C z+ z + 1 D z2+ 2z + 1
Câu 25 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 26 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 27 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 28 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln2
2.
Câu 29 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
Trang 3Câu 30 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 31 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 32 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 33 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −2
3.
Câu 34 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 2
√ 3
2 .
Câu 35 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 36 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 3
2 < |z| < 3 B. 5
2 < |z| < 4 C. 1
2 < |z| < 2 D 3 < |z| < 5.
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
2 ≤ |z| ≤ 2. B |z| <
1
1
2 < |z| < 3
2. D |z| > 2.
Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;+∞
!
4;
5 4
!
4
!
Câu 40 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1
Câu 41 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 5
2 < |z| < 7
1
2 < |z| < 3
2. D 2 < |z| <
5
2.
Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Trang 4Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 43 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= −6
5 −
27
5+ 27
5 + 6
5 −
6
5i.
Câu 44 Cho cấp số nhân (un) với u1= −1
2; u7= −32 Tìm q?
2.
Câu 45 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 46 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
A. 1
−1
Câu 47 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 48 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 49 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
Câu 50 Tính đạo hàm của hàm số y= 2023x
A y′ = x.2023x−1 B y′ = 2023x
ln 2023 D y′ = 2023x
ln x
Trang 5HẾT