Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A ea[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A ea> eb B. √5
a< √5
√
2> b√2 D a−√3 < b−√3
Câu 2 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; 1; 0) B (0; 5; 0) C (0; 0; 5) D (0; −5; 0).
Câu 3 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′
(2; −3; −1) D M′
(−2; −3; −1)
Câu 4 Cho lăng trụ đều ABC.A′
B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 5 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
x −1 .
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (2; −1; −2) B (−2; −1; 2) C (2; −1; 2) D (−2; 1; 2).
Câu 7 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 8 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
4√3π
Câu 9 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 10 Cho hàm số f (x)=
− 1
3x
3+ 1
2(2m+ 3)x2− (m2+ 3m)x + 2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Câu 11 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Câu 12 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Trang 2Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 14 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x≥ log5(x+ y2)?
Câu 15 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 16 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; −2; −1) B.→−n = (1; −2; 3) C.→−n = (1; 3; −2) D.→−n = (1; 2; 3)
Câu 17 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 18 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 19 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z.
Câu 20 Những số nào sau đây vừa là số thực và vừa là số ảo?
A C.Truehỉ có số 0 B 0 và 1 C Không có số nào D Chỉ có số 1.
Câu 21 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 22 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 23 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 11
11
29
29
13.
Câu 24 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 26 NếuR2
0 f(x)= 4 thì R02[1
2f(x) − 2] bằng
Câu 27 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
3πr2l
Câu 28 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ−1 B y′ = πxπ C y′ = 1πxπ−1 D y′ = xπ−1
Câu 29 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
A. 1
Trang 3Câu 30 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 1
′ (x)= lnx C F′(x)= −1
x2 D F′(x)= 2
x2
Câu 31 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 1
4
9
18
35.
Câu 32 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 33 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n2= (1; −1; 1) B.→−n4 = (1; 1; −1) C.→−n1 = (−1; 1; 1) D.→−n3 = (1; 1; 1)
Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
4;
5
4
!
4
!
2;
9 4
!
4;+∞
!
Câu 35 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 3
2. C |w|min = 2 D |w|min = 1
Câu 36 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
3
Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 39 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 40 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
1
1
2 < |z| < 3
2.
Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 4√13 B T = 2
√ 97
√ 85
Câu 42 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; 3; −4) B.→−n = (−2; 3; 1) C.→−n = (−2; 3; 4) D.→−n = (2; −3; 4)
Trang 4Câu 44 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 45 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A (1; −2; 0) B (−1; −3; 1) C (3; −1; −1) D A(−1; 2; 0).
Câu 46 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; −3] ∪ [3; +∞) B [−3; 3] C (−∞; 3] D (0; 3].
Câu 47 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 48 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
A. −1
1
Câu 49 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
C −x+ 2y + 2z + 4 = 0 D x − 2y − 2z − 4= 0
Câu 50 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
C x= 2 + 2ty = −3tz = −1 + t D x= 4 + 2ty = −3tz = 2 + t
Trang 5HẾT