Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P) z[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 2 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (−2; 1; 2) B (−2; −1; 2) C (2; −1; −2) D (2; −1; 2).
Câu 3 Công thức nào sai?
Câu 4 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 5 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x
A S = 1
3.
Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 7 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2 B m ≥ e−2 C m > e2 D m > 2e
Câu 9 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 10 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 11 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã
cho có diện tích lớn nhất bằng?
√ 3
2) C 3√3(m2) D. 3
√ 3
2)
Câu 12 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
2.
Câu 13 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?
Trang 2Câu 14 Cho hình lập phương ABCD.A′
B′C′D′ có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
6.
Câu 15 Cho hàm số y = x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và một tiệm cận đứng .
B Không có tiệm cận ngang và có một tiệm cận đứng.
C Có một tiệm cận ngang và không có tiệm cận đứng.
D Không có tiệm cận.
Câu 16 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A π√3.a2 B. 2π
√ 2.a2
π√3.a2
π√2.a2
Câu 17 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 18 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 19 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009i B (1+ i)2018 = −21009i C (1+ i)2018 = 21009 D (1+ i)2018 = −21009
Câu 20 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 21 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B m ≥ 1 hoặc m ≤ 0 C −1 ≤ m ≤ 0 D m ≥ 0 hoặc m ≤ −1 Câu 22 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 23 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 24 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 25 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số phức.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực.
Câu 26 Cho tam giác ABC vuông tại A, AB= a, BC = 2a Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục AB
3
Câu 27 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2
Khi t= 0 thì vận tốc của vật là 30 (m/s) Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
Trang 3Câu 28 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau đây:
A (1; −2; 7) B (4; −6; 8) C (−2; 2; 6) D (−2; 3; 5).
Câu 29 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)
Câu 30 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng
với lãi suất 3
A 46.538667 đồng B 43.091.358 đồng C 45.188.656 đồng D 48.621.980 đồng Câu 31 Tứ diện OABC có OA = OB = OC = a và đôi một vuông góc Gọi M, N, P lần lượt là trung điểm AB, BC, CA Thể tích tứ diện OMNP là
A. a
3
a3
a3
a3
4.
Câu 32 Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π (dm3) Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm trong nước Tính thể tích nước còn lại trong bình
A 54π(dm3) B 6π(dm3) C 12π(dm3) D 24π(dm3)
Câu 33 Rút gọn biểu thức M= 1
logax + 1
loga2x+ + 1
logakx ta được:
A M= k(k+ 1)
2logax . B M= 4k(k+ 1)
logax . C M = k(k+ 1)
3logax . D M = k(k+ 1)
logax .
Câu 34 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1
Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 36 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B. 3
2 ≤ |z| ≤ 2. C |z| <
1
1
2 < |z| < 3
2.
Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2√13 B T = 2
√ 85
√ 97
Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
5
2 < |z| < 7
3
2 < |z| < 2 D. 1
2 < |z| < 3
2.
Câu 39 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
C a2+ b2+ c2− ab − bc − ca D a2+ b2+ c2+ ab + bc + ca
Câu 40 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
Trang 4Câu 41 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i.
Câu 42 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600
Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 44 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 B (x − 1)2+ (y + 2)2+ (z − 4)2= 1
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y − 2)2+ (z − 4)2= 1
Câu 46 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1) ln 4. B y
2(x2− 1) ln 4. C y
(x2− 1)log4e. D y
′ = √ 1
x2− 1 ln 4.
Câu 47 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 9a3√
3
Câu 48 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 125π
√
3
500π√3
250π√3
400π√3
Câu 49 Chọn mệnh đề đúng trong các mệnh đề sau:
2 + C
C.R (2x+ 1)2dx= (2x+ 1)3
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Trang 5HẾT