Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6 22x − 13 6x + 6 32x = 0 A[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; 21; 21) B C(20; 15; 7) C C(6; −17; 21) D C(8;21
2 ; 19).
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 4 Kết quả nào đúng?
A.R sin2xcos x= −sin3x
C.R sin2xcos x= cos2x sin x + C D.R sin2xcos x= sin3x
Câu 5 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 6 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếux= 1 thì y = −3 B Nếu 0 < x < 1 thì y < −3.
C Nếu 0 < x < π thì y > 1 − 4π2 D Nếux > 2 thìy < −15.
Câu 7 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
Câu 8 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 9 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −1 B f (−1)= −3 C f (−1)= −5 D f (−1)= 3
Câu 10 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 11 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
3
a
√ 2
√
√ 3
2 .
Câu 12 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. π√2.a2
√
2π√2.a2
Trang 2Câu 13 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017.
A (0;1
1
Câu 14 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′ = 2
3x − 1
ln 2
(3x − 1) ln 2. C y
(3x − 1) ln 2. D y
′ = 6 3x − 1
ln 2
Câu 15 Cho hình phẳng (H) giới hạn bởi các đường y= x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 32
5 .
Câu 16 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
2.
Câu 17 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 18 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 19 Những số nào sau đây vừa là số thực và vừa là số ảo?
A C.Truehỉ có số 0 B Không có số nào C Chỉ có số 1 D 0 và 1.
Câu 20 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 21 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 22 Với mọi số phức z, ta có |z+ 1|2bằng
A z · z+ z + z + 1 B z2+ 2z + 1 C z+ z + 1 D |z|2+ 2|z| + 1
Câu 23 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 24 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2 z1
là
Câu 25 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực dương.
Câu 26 Lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′ lên (ABC)
là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′đến mp (ABB′A′) là
A. 3a
√
13
3a√10
3a√13
a√3
2 .
Câu 27 Rút gọn biểu thức M= 1
logax + 1
loga2x + + 1
logakx ta được:
A M = k(k+ 1)
3logax . B M = k(k+ 1)
2logax . C M = 4k(k+ 1)
logax . D M= k(k+ 1)
logax .
Trang 3Câu 28 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
Câu 29 Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với BA= BC = a, S A = a và vuông góc với mặt phẳng đáy Tính côsin góc giữa hai mặt phẳng (SAC) và (SBC) bằng?
A.
√
2
√ 2
√ 3
1
2.
Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình
hành
A (1; 1; 3) B (1; −1; 1) C (1; −2; −3) D (−1; 1; 1).
Câu 31 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường tròn nội tiếp tam giác ABC bằng
Câu 32 Xác định tập tất cả các giá trị của tham số m để phương trình
2x3+ 3
2x
2− 3x − 1
2
=
m
2 − 1
có 4 nghiệm phân biệt
A S = (−2; −3
4) ∪ (
19
4) ∪ (
19
4 ; 7).
4) ∪ (
19
4 ; 6).
Câu 33 Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π (dm3) Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm trong nước Tính thể tích nước còn lại trong bình
A 6π(dm3) B 24π(dm3) C 12π(dm3) D 54π(dm3)
Câu 34 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 4√13 B T = 2√13 C T = 2
√ 85
√ 97
Câu 36 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 37 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 38 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 39 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 2 B |w|min= 3
2. C |w|min = 1
2. D |w|min = 1
Câu 40 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 41 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Trang 4Câu 42 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
3
1
2 < |z| < 3
2.
Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 44 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 45 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 250π
√
3
500π√3
125π√3
400π√3
Câu 46 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 47 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 3mn+ n + 4
C log22250= 2mn+ n + 2
Câu 48 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= x3− 3x2
B y= −x4+ 2x2+ 8 C y= −x4+ 2x2 D y= −2x4+ 4x2
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(4
3;
10
3 ;
16
5
3;
11
3 ;
17
7
3;
10
3 ;
31
2
3;
7
3;
21
3 ).
Câu 50 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
128.
Trang 5HẾT