Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y =[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A m ∈ (0; 2) B m ≥ 0 C m ∈ (−1; 2) D −1 < m < 7
2.
Câu 2 Bất đẳng thức nào sau đây là đúng?
Câu 3 Hàm số nào sau đây không có cực trị?
Câu 4 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′(2; −3; −1) B M′(−2; 3; 1) C M′(−2; −3; −1) D M′(2; 3; 1)
Câu 5 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
3 .
Câu 6 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 7 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
A. 4
√
3π
√
3
Câu 8 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 9 Tính nguyên hàmR cos 3xdx
A 3 sin 3x+ C B −3 sin 3x+ C C. 1
3sin 3x+ C
Câu 10 Cho hàm số f (x) thỏa mãn f′′
(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= 3 B f (−1)= −3 C f (−1)= −5 D f (−1)= −1
Câu 11 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 12 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= x4+ 1 B y= −x4+ 2x2+ 1 C y = x4+ 2x2+ 1 D y= −x4+ 1
Câu 13 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A 0 < m < 2 B −2 ≤ m ≤ 2 C m= 2 D −2 < m < 2.
Trang 2Câu 14 Cho hàm số y =
x
3
− mx+ 5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 15 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y= x3+ x2+ mx − 1nằm bên phải trục tung
A m < 0 B 0 < m < 1
3. C Không tồn tại m. D m <
1
3.
Câu 16 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 17 Bất đẳng thức nào sau đây là đúng?
C (√3 − 1)e < (√3 − 1)π D 3π < 2π
Câu 18 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′(2; 3; 1) B M′(−2; 3; 1) C M′(−2; −3; −1) D M′(2; −3; −1)
Câu 19 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc tơ pháp tuyến của (P) là
A (−2; 1; 2) B (2; −1; 2) C (−2; −1; 2) D (2; −1; −2).
Câu 21 Kết quả nào đúng?
A.R sin2xcos x= sin3x
C.R sin2xcos x= cos2x sin x + C D.R sin2xcos x= −cos2x sin x + C
Câu 22 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A 2πRl B 2π√l2− R2 C π√l2− R2 D πRl.
Câu 23 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp
là:
A VS.ABC =
√ 3ab2
√ 3b2− a2
C VS.ABC = a
2
q
b2− √3a2
√ 3a2b
12 .
Câu 24 Cho số thực dươngm Tính I =
m
R
0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 1
m+ 2
2m+ 2
m+ 2 2m+ 2).
Câu 25 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếu 0 < x < π thì y > 1 − 4π2 B Nếux= 1 thì y = −3
C Nếu 0 < x < 1 thì y < −3 D Nếux > 2 thìy < −15.
Câu 26 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A loga(xy)= logax.logay B loga1= a và logaa= 0
C logaxn = log
a
1 n
x, (x > 0, n , 0) D logaxcó nghĩa với ∀x ∈ R
Trang 3Câu 27 Tính tích phân I = R
1
ln x
x dx, (n > 1)
1
n −1.
Câu 28 Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy bằng R Khi đặt thùng
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng R
√ 3
2 (mặt nước thấp hơn trục của hình trụ) Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1 Tính tỉ số h1
h
A. 2π −
√
3
√ 3
π − √3
2π − 3√3
Câu 29 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)
Câu 30 Cho hình chóp tứ giác S ABCD có đáy là hình vuông cạnh bằng a√2, tam giác S AB vuông cân tại S và mặt phẳng (S AB) vuông góc với mặt phẳng đáy Khoảng cách từ A đến mặt phẳng (S CD) là
A. a
√
2
a√10
a√6
√ 2
Câu 31 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 2a
2b
2a2b
4a2b
4a2b
3√3π .
Câu 32 Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A y= x4+ 2x2− 1 B y= −x4− 2x2− 1 C y= x4− 2x2− 1 D y= 2x4+ 4x2+ 1
Câu 33 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x+ 5, tiếp tuyến tại A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C)
A. 9
5
3
7
4.
Câu 34 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 35 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 − 2t
y= −2 + 3t
x= −1 + 2t
y= 2 + 3t
x= 1 + 2t
y= −2 + 3t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t .
Câu 36 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3
√ 15
a3
√ 15
a3
√ 5
Câu 37 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
1
√ 5
√ 15
10 .
Câu 38 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị
F(0) bằng:
A. 1
5ln 2+ 6π
1
4ln 2+ 3π
2 . C ln 2+ 6π
6π
5 .
Trang 4Câu 39 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R.
A m < 0 B m > −2 C −3 ≤ m ≤ 0 D −4 ≤ m ≤ −1.
Câu 40 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
Câu 41 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 9a3√
3
Câu 42 Cho hình lăng trụ đứng ABCD.A′
B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A.
√
5
√ 3
√ 3
1
2.
Câu 43 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −x4+ 2x2+ 8 C y= −2x4+ 4x2 D y= x3− 3x2
Câu 44 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 45 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 47 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
2
5a
√ 3
5a
√ 3
5a
√ 2
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 B (x − 1)2+ (y − 2)2+ (z − 4)2= 1
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1
Câu 49 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
128.
Câu 50 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Trang 5HẾT