TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2 c] Cho a = log27 5, b = log8 7, c = log2 3 Khi đó log12[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 3ac
3b+ 2ac
3b+ 2ac
c+ 3 .
Câu 2. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
A. 2
Câu 3. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 4. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 1
2√e.
Câu 5. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = 3a3√
3 C V = a3
√ 3
2 . D V = 6a3
Câu 6. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Câu 7. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 8. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
0 = 2x ln 2 C y0 = 2x ln x D y0 = 1
2x ln x.
Câu 9. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 2
1
1
9
10.
Câu 10. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 11. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 2
1
Câu 12. [1] Giá trị của biểu thức 9log3 12
bằng
Câu 13. Bát diện đều thuộc loại
Câu 14. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 < m ≤ 3
9
3
Trang 2Câu 15. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
√ 6
Câu 16. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√ 5
Câu 17. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 18. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Câu 19. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
3
a3
12.
Câu 20. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 21. Khối đa diện đều loại {3; 5} có số mặt
Câu 22 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
u0(x)
u(x)dx= log |u(x)| + C
B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
Câu 23. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 24. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= a
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 25. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
2.
Câu 26. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 27. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
√
3√ 2
3 .
Trang 3Câu 28. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 29. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
2a√57
a
√ 57
17 .
Câu 30. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 31. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ đứng là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 32. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 33. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Câu 34. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 2
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
√ 3
2 e
π
√ 2
2 e
π
2e
π
3
Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
4a3√ 3
8a3√ 3
8a3√ 3
3 .
Câu 37. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 38. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a
a
a√2
3 .
Câu 39. [1] Biết log6 √a= 2 thì log6abằng
Câu 40. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Trang 4Câu 41. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 42. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 43. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 5a
2a
a
8a
9 .
Câu 44. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 45. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√
Câu 46. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 47. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3
2a3√3
4a3√3
4a3
3 .
Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 49. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a√3
√
√ 3
3 .
Câu 50. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√
Câu 51. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 52. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 53. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 54. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Trang 5Câu 55. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 56. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 57. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
-2
3.
Câu 58. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 59. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.
Câu 60. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (I) đúng B Cả hai đều sai C Cả hai đều đúng D Chỉ có (II) đúng.
Câu 61. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 62. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
1
1
8
3.
Câu 63. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 64. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
Câu 65. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2
!
2;+∞
!
2;+∞
!
Trang 6Câu 66. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A. 1
1
1
2.
Câu 67. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 68. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên (n − 1) lần C Tăng lên n lần D Không thay đổi.
Câu 69. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3
√ 3
a3
√ 3
12 .
Câu 70. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 71. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 72. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 73. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√ 17
√ 68
Câu 74. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 75. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 76. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 77. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
A (+∞; −∞) B (−∞; 1] C [3;+∞) D [1;+∞)
Câu 78. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 79. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 80. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 81. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A.
"
2;5
2
!
2; 3
!
Trang 7Câu 82. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 12 mặt đều B Khối 20 mặt đều C Khối bát diện đều D Khối tứ diện đều.
Câu 83. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.
Câu 84. Khối đa diện đều loại {5; 3} có số cạnh
Câu 85. Khối đa diện đều loại {3; 4} có số cạnh
Câu 86. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 87. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 88. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối 20 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 89. Tính lim
x→3
x2− 9
x −3
Câu 90. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√
2 D 3+ 4√2
Câu 91. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
√ 3
3
4.
Câu 92. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 93. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 94 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B.
Z
f(x)dx
!0
= f (x)
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 95. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 96. Tính lim
x→1
x3− 1
x −1
Câu 97. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Trang 8Câu 98. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 3
a3
√ 2
2√ 2
Câu 99. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
√ 3
3
1
2.
Câu 100. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 101. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B F(x)= G(x) trên khoảng (a; b)
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Câu 102. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 103. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 104. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 105. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
1
1
4.
Câu 106. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
5a3√ 3
4a3√ 3
a3√ 3
2 .
Câu 107. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 108. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
3√
3√ 6
a3√5
3 .
Câu 109. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
A 2
√
2 và 3 B 2 và 2
√
√
2 và 3
Câu 110. Khối đa diện đều loại {3; 4} có số mặt
Câu 111. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Trang 9Câu 112. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|.
Câu 113. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h.
Câu 114. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 115. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 4 ln 2x
2x3ln 10 . D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 116. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 117. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 118. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 3, 5 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.
Câu 119. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 120. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.
Câu 121. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 122. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 123. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 124 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim √1
n = 0
nk = 0 với k > 1
Câu 125. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 126. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 127. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
A. 3a
Trang 10Câu 128 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 129. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 130. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
HẾT