1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt toán 12 (450)

4 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt toán 12 (450)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 4
Dung lượng 107,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 3 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hai đường thẳng d và d′ cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d′? A Có hai B C[.]

Trang 1

Free LATEX

(Đề thi có 3 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 2. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 6

a3

√ 2

a3

√ 3

24 .

Câu 3. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 4. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = (1, 01)3

(1, 01)3− 1 triệu. B m = 100.1, 03

3 triệu.

C m = 120.(1, 12)3

(1, 12)3− 1 triệu. D m = 100.(1, 01)3

3 triệu.

Câu 5. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 6. Cho

Z 1

0

xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

Câu 7. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 8. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 9. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 10. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 11. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 12. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Trang 2

Câu 13. [1] Giá trị của biểu thức 9log3 12

bằng

Câu 14. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 15 Phát biểu nào sau đây là sai?

A lim 1

nk = 0 với k > 1 B lim un= c (Với un = c là hằng số)

n = 0

Câu 16. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Câu 17. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 18. Khối đa diện đều loại {3; 5} có số mặt

Câu 19. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

Câu 20. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 5a

3√

3

a3√ 3

4a3√ 3

2a3√ 3

3 .

Câu 21. Khối lập phương thuộc loại

Câu 22. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 1

2

2e3

Câu 23. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 24. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 25. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

Câu 26. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3√3

a3√2

12 .

Câu 27. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Trang 3

Câu 28. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 29. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

A 3

Câu 30. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

2

Câu 31. Biểu thức nào sau đây không có nghĩa

A (−

−1

Câu 32. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Không thay đổi C Tăng lên (n − 1) lần D Giảm đi n lần.

Câu 33. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 34. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 35. Tính lim

x→2

x+ 2

x bằng?

Câu 36. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 3S h B V = 1

2S h.

Câu 37. [1] Giá trị của biểu thức log √31

10 bằng

A −1

1

Câu 38. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 39. Tính giới hạn lim2n+ 1

3n+ 2

2

3

2.

Câu 40 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C B.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

C.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số D.

Z

f(x)dx

!0

= f (x)

HẾT

Trang 4

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 20/03/2023, 07:26

w