Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→+∞ x − 2 x + 3 A −3 B 1 C 2 D − 2 3 Câu 2 Tìm m để hàm số y = mx − 4 x + m đạt giá trị lớn nhất[.]
Trang 1Free LATEX
(Đề thi có 4 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 2. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 3. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 4 Phát biểu nào sau đây là sai?
A lim 1
nk = 0 với k > 1 B lim √1
n = 0
C lim qn= 1 với |q| > 1 D lim un= c (Với un = c là hằng số)
Câu 5. [2D1-2]
Trang 2Cho hàm số f (x) có đạo hàm liên tục trên R Đồ thị của hàm số y = f (x)
được cho như hình vẽ bên Hãy chọn khẳng định đúng.
A Hàm số y= f (x) nghịch biến trên khoảng (1; 3)
B Hàm số y= f (x) đồng biến trên khoảng (−1; 1) và (3; 4)
C Hàm số y= f (x) đồng biến trên khoảng (0; 2)
D Hàm số y= f (x) đồng biến trên khoảng (−1; 1)
Trang 3Câu 6 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
1
xdx= ln |x| + C, C là hằng số B.
Z
dx = x + C, C là hằng số
C.
Z
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 7. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
1
e.
Câu 8. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 9. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 10 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 2, 20 triệu đồng C 3, 03 triệu đồng D 2, 22 triệu đồng.
Câu 11. Tìm giới hạn lim2n+ 1
n+ 1
Câu 12. Bát diện đều thuộc loại
Câu 13. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 14. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 15. [1] Giá trị của biểu thức 9log3 12bằng
Câu 16. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 17. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
Câu 18. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1 0
f(x)dx
Câu 19. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
√
√
√ 2
3 .
Trang 4Câu 20. Hàm số f có nguyên hàm trên K nếu
Câu 21. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 22 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
Câu 23. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
9
3
Câu 24. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A a
√
√ 57
a√57
2a√57
19 .
Câu 25. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 26. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 27. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
3S h. D V = 1
2S h.
Câu 28. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B (−∞; −2] ∪ [−1; +∞) C −2 < m < −1 D (−∞; −2) ∪ (−1;+∞)
Câu 29. Khối đa diện đều loại {4; 3} có số cạnh
Câu 30. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
a2
√ 5
a2
√ 2
11a2
32 .
Câu 31. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
a3
3
Câu 32. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số nghịch biến trên khoảng 1
3; 1
!
Trang 5Câu 33. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 34. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 35. Tính lim 5
n+ 3
Câu 36. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 37. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 7
5
2.
Câu 38. [2D1-2]
Cho hàm số y = f (x) có đạo hàm trên R và đồ thị của
hàm số y = f0
(x) như hình bên Hàm số y = f (x) đồng
biến trên khoảng nào sau đây?
A (−1; 0) B (1; 2) C (0; 1) D (−2; ∞).
Câu 39. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 40. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
HẾT
Trang 6-ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
39 B