b, Tìm giá trị của biểu thức A có giá trị bằng 0.. c, Tìm giá trị nguyên của x để A có giá trị nguyên.. .a, Xác định vị trí các điểm K,L,M,N sao cho tứ giác MNKL có diện tích mhỏ nhất..
Trang 1ĐỀ 11
Câu 1:Cho biểu thức: A=
9 33 19
3
36 3
14 3
2 3
2 3
x x
x
x x
x
a, Tìm giá trị của biểu thức A xác định
b, Tìm giá trị của biểu thức A có giá trị bằng 0
c, Tìm giá trị nguyên của x để A có giá trị nguyên
Câu 2:
.a, Tìm giá trị nhỏ nhất của biểu thức : A=
x
x
x 16 )( 9 )
với x>0
.b, Giải phương trình: x+1+: 2x-1+2x =3
Câu3 : Cho tứ giác ABCD có diện tích S Gọi K,L,M,N lần lượt là các điểm thuộc
các cạnh AB,BC,CA,AD sao cho AK/ AB = BL / BC =CM/CD =DN/DA= x
.a, Xác định vị trí các điểm K,L,M,N sao cho tứ giác MNKL có diện tích mhỏ nhất b, Tứ giác MNKL ở câu a là hình gì? cần thêm điều kiện gì thì tứ giác MNKL là hình chữ nhật
Câu 4: Tìm dư của phép chia đa thức
x99+ x55+x11+x+ 7 cho x2-1
ĐÁP ÁN Câu1 (3đ)
a.(1đ)
Ta có A=
) 1 3 ( ) 3 (
) 4 3 ( ) 3 (
2 2
x x
x x
(0,5đ) Vậy biểu thức A xác định khi x3,x1/3(0,5đ)
b Ta có A=
1 3
4 3
x
x
do đó A=0 <=> 3x +4=0 (0,5đ)
<=> x=-4/3 thoã mãn đk(0,25đ)
Vậy với x=-4/3 thì biểu thức A có giá trị bằng 0 (0,25đ)
c (1đ)
Ta có A=
1 3
4 3
x
x
= 1+
1 3
5
x
Để A có giá trị nguyên thì
1 3
5
x phải nguyên<=> 1 là ước của 5<=> 3x-11,5
Trang 2=>x=-4/3;0;2/3;2
Vậy với giá trị nguyên của xlà 0 và 2 thì A có giá trị nguyên (1đ)
Câu: 2: (3đ)
a.(1,5đ)
Ta có
A=
x
x
x2 25 144
=x+
x
144
+25 (0,5đ)
Các số dương x và
x
144
Có tích không đổi nên tổng nhỏ nhất khi và chỉ khi x =
x
144
x=12 (0,5đ)
Vậy Min A =49 <=> x=12(0,5đ)
b.(1,5đ)
TH1: nếu x<-1 thì phương trình đã cho tương đương với :-x-1-2x+1+2x=3=>x=-3<-1(là nghiệm )(0,5đ)
TH2: Nếu -1x<1/2 thì ta có
x+1-2x+1+2x=3=> x=1>1/2(loại )(0,25đ)
TH3: Nếu x1/2ta có
x+1+2x-1+2x=3=> x=3/5<1/2 (loại)(0,25đ)
Vậy phương trình đã cho x=-3 (0,5đ)
Câu 3: (3đ)
C L D
M K
D N B1 K1 A Gọi S1,,S2, S3, S4 lần lượt là diện tích tam giác AKN,CLM,DMN và BKL
Kẻ BB1AD; KK1AD ta có KK1//BB1 => KK1/BB1= AK/AB
SANK/SABD= AN.KK1/AD.BB1= AN.AK/AD.AB= x(1-x)=> S1=x(1-x) SABD(0,5đ) Tương tự S2= x(1-x) SDBC=> S1,+S2= x(1-x)( SABD+ SDBC)= x(1-x)S (0,25đ)
Tương tự S3+S4= x(1-x)S
S1,+S2+ S3+ S4= x(1-x)2S (0,25đ)
Trang 3 SMNKL=S-( S1,+S2+ S3+ S4)= 2S x2-2Sx+S=2S(x-1/2)2+1/2S1/2S(0,25đ) Vậy SMNKL đạt giá trị nhỏ nhất bằng 1/2S khi x=1/2 khi đó M,N,K,L lần lượt là trung điểm các cạnh CD,DA,AB,BC (0,25đ)
b.(1,5đ)
tứ giác MNKL ở câu a là hình bình hành (1đ)
tứ giác MNKL ở câu a là hình chữ nhật khi BDAC (0,5đ)
Câu 4: (1đ)
Gọi Q(x) là thương của phép chia x99+x55+x11+x+7 cho x2-1
ta có x99+x55+x11+x+7=( x-1 )( x+1 ).Q(x)+ax+b(*)
trong đó ax+b là dư của phép chia trên
Với x=1 thì(*)=> 11=a+b
Với x=-1 thì(*)=> 3=-a+b=> a=4,b=7
Vậy dư của phép chia x99+x55+x11+x+7 cho x2-1 là 4x+7
==========================