1. Trang chủ
  2. » Giáo Dục - Đào Tạo

cấp số cộng, cấp số nhân

13 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Cấp số cộng, cấp số nhân
Trường học Trường Đại Học Sư Phạm Hà Nội
Chuyên ngành Toán học
Thể loại Tài liệu ôn thi
Năm xuất bản 2021
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 894,87 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TÀI LIỆU ÔN THI THPTQG 2021 TÀI LIỆU ÔN THI THPTQG 2021 TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH KHÁ Cấp số cộng Một dãy số được gọi là cấp số cộng nếu số liền sau trừ số liền trước bằng một hằng số không thay đổi, hằng số không thay đổi đó được gọi là công sai Cấp số nhân Một dãy số được gọi là cấp số nhân nếu số liền sau chia số liền trước bằng một hằng số không thay đổi, hằng số không thay đổi đó được gọi là công bội Câu 1 (Mã 101 2020 Lần 1) Cho cấp số nhân với và công bội Giá trị của.

Trang 1

TÀI LIỆU ÔN THI THPTQG 2021

TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH - KHÁ

 Cấp số cộng: Một dãy số được gọi là cấp số cộng nếu số liền sau trừ số liền trước bằng một hằng

số không thay đổi, hằng số không thay đổi đó được gọi là công sai d

k k

g

1 ( 1)

n

2

n

g

 Cấp số nhân: Một dãy số được gọi là cấp số nhân nếu số liền sau chia số liền trước bằng một hằng

số không thay đổi, hằng số không thay đổi đó được gọi là công bội q

k

k

u

q u

+ =

1 1

1 n

n

1 1

n n

q

q

-g

Câu 1 (Mã 101 - 2020 Lần 1) Cho cấp số nhân  u n

với u1  và công bội 3 q2 Giá trị của u bằng2

3

2.

Câu 2 (Mã 102 - 2020 Lần 1) Cho cấp số nhân  u n với u1  và công bội 32 q Giá trị của u bằng2

2

3

Câu 3 (Mã 103 - 2020 Lần 1) Cho cấp số nhân  u n

với u1  và công bội 43 q Giá trị của u bằng2

3

4 Câu 4 (Mã 104 - 2020 Lần 1) Cho cấp số nhân  u n

với u1  và công bội 4 q3 Giá trị của u bằng2

4

3.

Câu 5 (Mã 102 - 2020 Lần 2) Cho cấp số cộng  u n

với u1  và công sai 9 d 2 Giá trị của u bằng2

9

Câu 6 (Mã 103 - 2020 Lần 2) Cho cấp số cộng  u n

với u18 và công sai d  Giá trị của 3 u bằng2

A

8

Câu 7 (Mã 104 - 2020 Lần 2) Cho cấp số cộng  u n

với u1 công sai 7 d 2 Giá trị u bằng2

7

Câu 8. Cho cấp số nhân  u n

với u1 và 2 u2  Công bội của cấp số nhân đã cho bằng6

1

3.

Trang 1

C P S C NG - C P S NHÂN - L P 11 Ấ Ố Ộ Ấ Ố Ớ Chuyên đề 39

Trang 2

Câu 9. Cho cấp số cộng  u n

với u13; u2 9 Công sai của cấp số cộng đã cho bằng

Câu 10 Cho cấp số cộng  u n với u1  và 2 u7   Công sai của cấp số cộng đã cho bằng10

Câu 11 Cho cấp số cộng  u n

với u1 và 4 d 8 Số hạng u của cấp số cộng đã cho bằng20

Câu 12 Cho cấp số cộng  u n

với u13 và d 3 Tổng 10 số hạng đầu tiên của cấp số cộng đã cho

bằng

Câu 13 Cho cấp số cộng 2;5;8;11;14 Công sai của cấp số cộng đã cho bằng

Câu 14 Công thức tính số hạng tổng quát của cấp số cộng với công sai d và số hạng đầu u là1

A u nnu1n n 1d B u n   u1 n 1d.

C

1

1 2

n

n n

 

D

1

1 2

n

n n

Câu 15 Cho cấp số cộng  u n với u15;u2 10 Công sai của cấp số cộng đã cho bằng

Câu 16 Dãy số nào sau đây không phải là cấp số nhân?

A 1; 3; 9; 27; 54  . B 1; 2; 4; 8; 16 C 1; 1; 1; 1; 1  . D 1; 2; 4; 8;16  .

Câu 17 Cho cấp số nhân  u n với 1

1 2

u

và công bội q2 Giá trị của u bằng10

1

37

2

Câu 18 Xác định x để 3 số x1; 3; x theo thứ tự lập thành một cấp số nhân:1

A x2 2. B x 5 C x 10 D x3

Câu 19 Cho cấp số nhân  u n

với u13;u2  Công bội của cấp số nhân đã cho bằng1

A

1

Câu 20 Cho cấp số nhân  u n

với 1 6

1

; 16 2

Tìm q?

A q � 2 B q 2 C q  2 D

33 10

q

Trang 2

Trang 3

TÀI LIỆU ÔN THI THPTQG 2021 Câu 21 Cho cấp số nhân  u n

với u2 8 và công bội q Số hạng đầu tiên 3 u của cấp số nhân đã cho1 bằng

8

3

8

Câu 22 Cho cấp số nhân có u13, q  Tính 2 u5

A u5  6 B u5  5 C u5 48 D u5  24

Câu 23 Cho cấp số cộng  u n

với u1 và 1 u4   Công sai của 26  u n

bằng

A 27. B 9. C 26. D 3  26

Câu 24 Một cấp số nhân có số hạng đầu u1  , công bội 3 q 2 Biết S n 21 Tìm n ?

A n10. B n3.

C n7. D Không có giá trị của n

Câu 25 Cho cấp số cộng  u n

có số hạng đầu u1 11và công sai d  Giá trị của 4 u bằng5

Câu 26 Cho cấp số cộng  u n có số hạng đầu u2  và 2 u3  Giá trị của 5 u bằng5

Câu 27 Cho cấp số nhân  u n

có số hạng đầu u1 và công bội 2 q 2 Giá trị của u bằng6

Câu 28 Cho cấp số cộng  u n

có số hạng đầu u3   và 1 u4  Công sai d bằng2

Câu 29 Cho cấp số nhân ( )u n

biết u1=3n Công bội q bằng

1

Câu 30 Cho cấp số cộng  u n

có số hạng đầu u1 và công sai 3 d  Tổng của 2019 số hạng đầu bằng2

A 4 080 399 B 4 800 399 C 4 399 080 D 8 154 741.

Câu 31 Cho dãy số  u n với u n 2n1 số hạng thứ 2019 của dãy là

Câu 32 Cho cấp số nhân  u n

có số hạng đầu u1 2 và công bội q Giá trị 3 u2019 bằng

A 2.32018 B 3.22018 C 2.32019 D 3.22019

Câu 33 Cho cấp số nhân  u n

có số hạng đầu u1  và 2 u6 486 Công bội q bằng

3 2

q

2 3

q

Câu 34 Cho cấp số cộng  u n

có  u1 và công sai 11 d  Hãy tính 4 u 99

Trang 3

Trang 4

A 401 B 403 C 402 D 404

Câu 35 Cho cấp số cộng  u n

với u1  ; 2 d  Khi đó số 2018 là số hạng thứ mấy trong dãy?9

Câu 36 Cho cấp số cộng  u n

u1 và công sai 1 d 2 Tổng S10   u1 u2 u3 u10 bằng

A S10 110. B S10 100. C S10 21. D S10 19.

Câu 37 Cho cấp số nhân u n có số hạng đầu u1  và 2 u6 486 Công bội q bằng

3 2

q

2 3

q

Câu 38 Cho cấp số nhân  u n

u1  , công bội 3 q2 Khi đó u bằng5

Câu 39 Cho cấp số cộng  u n

, với u1 2, u5 14 Công sai của cấp số cộng là

Câu 40 Cho cấp số nhân  u n

biết u12,u2  Công bội của cấp số nhân đó là1

1 2

1

Câu 41 Cho cấp số cộng  u n

u1 , 3 d   Số hạng thứ 10 của cấp số cộng đó là:2

Câu 42 Cho cấp số nhân  u nu2 2,u6 32 Công bội của cấp số nhân đó là

1 2

Câu 43 Cho cấp số nhân u n

u15, q Số hạng thứ 6 của cấp số nhân đó là2

A

1

Câu 44 Cho cấp số cộng  u n

với u12 và u2 6 Công sai của cấp số cộng đã cho bằng

Câu 45 Cho cấp số cộng  u n

với u1 và 1 u2  Công sai của cấp số cộng đã cho bằng4

Câu 46 Cho cấp số cộng (un) với u13 và u2 9 Công sai của cấp số cộng đã cho bằng

Câu 47 Cho cấp số cộng  u n

với u12 và u2 8 Công sai của cấp số cộng đã cho bằng

Trang 4

Trang 5

TÀI LIỆU ÔN THI THPTQG 2021

TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH - KHÁ

 Cấp số cộng: Một dãy số được gọi là cấp số cộng nếu số liền sau trừ số liền trước bằng một hằng

số không thay đổi, hằng số không thay đổi đó được gọi là công sai d

k k

g

1 ( 1)

n

2

n

g

 Cấp số nhân: Một dãy số được gọi là cấp số nhân nếu số liền sau chia số liền trước bằng một hằng

số không thay đổi, hằng số không thay đổi đó được gọi là công bội q

k

k

u

q u

+ =

1 1

1 n

n

1 1

n n

q

q

-g

Câu 1 (Mã 101 - 2020 Lần 1) Cho cấp số nhân  u n

với u1  và công bội 3 q2 Giá trị của u bằng2

3

2.

Lời giải Chọn C

Ta có: u2 u q1 3.2 6

Câu 2 (Mã 102 - 2020 Lần 1) Cho cấp số nhân  u n với u1  và công bội 32 q Giá trị của u bằng2

2

3

Lời giải Chọn A

Ta có u2 u q1 2.3 6

Câu 3 (Mã 103 - 2020 Lần 1) Cho cấp số nhân  u n

với u1  và công bội 43 q Giá trị của u bằng2

3

4 Lời giải

Chọn C

Ta có u2 u q1 3.4 12

Câu 4 (Mã 104 - 2020 Lần 1) Cho cấp số nhân  u n

với u1  và công bội 4 q3 Giá trị của u bằng2

4

3.

Lời giải Chọn C

2 1 4.3 12

Câu 5 (Mã 102 - 2020 Lần 2) Cho cấp số cộng  u n

với u1  và công sai 9 d 2 Giá trị của u bằng2

9

Trang 5

C P S C NG - C P S NHÂN - L P 11 Ấ Ố Ộ Ấ Ố Ớ Chuyên đề 39

Trang 6

Lời giải Chọn A

Ta có: u2      u1 d 9 2 11

Câu 6 (Mã 103 - 2020 Lần 2) Cho cấp số cộng  u n

với u18 và công sai d  Giá trị của 3 u bằng2

A

8

Lời giải Chọn D

Áp dụng công thức ta có: u2     u1 d 8 3 11.

Câu 7 (Mã 104 - 2020 Lần 2) Cho cấp số cộng  u n

với u1 công sai 7 d 2 Giá trị u bằng2

7

Lời giải Chọn B

Vì  u n

là một cấp số cộng thì u n1 u n du2    u1 d 7 2 9

Câu 8. Cho cấp số nhân  u n

với u1 và 2 u2  Công bội của cấp số nhân đã cho bằng6

1

3.

Lời giải Chọn A

Ta có

2

2 1

1

6

2

u

u

Câu 9. Cho cấp số cộng  u n

với u13; u2 9 Công sai của cấp số cộng đã cho bằng

Lời giải Chọn A

Cấp số cộng  u n

có số hạng tổng quát là: u n   u1 n 1d;

(Với u1 là số hạng đầu và d là công sai).

Suy ra có: u2  u1 d9 3 d  �d 6.

Vậy công sai của cấp số cộng đã cho bằng 6

Câu 10. Cho cấp số cộng  u n

với u1  và 2 u7   Công sai của cấp số cộng đã cho bằng10

Lời giải Chọn D

Ta có:

7 1

7 1 6

6

  � u u

hay

10 2

2 6

 

d

Câu 11. Cho cấp số cộng  u n

với u1 và 4 d 8 Số hạng u của cấp số cộng đã cho bằng20

Trang 6

Trang 7

TÀI LIỆU ÔN THI THPTQG 2021

Lời giải Chọn A

Ta có: u20  u1 19d  4 19.8 156 .

Câu 12. Cho cấp số cộng  u n

với u13 và d  3 Tổng 10 số hạng đầu tiên của cấp số cộng đã cho

bằng

Lời giải Chọn C

Ta có: S10 10.u145.d 30 45.( 3)   105.

Câu 13. Cho cấp số cộng 2;5;8;11;14 Công sai của cấp số cộng đã cho bằng

Lời giải Chọn B

Theo định nghĩa ta có d 14 11 11 8 8 5 5 2 3        .

Câu 14. Công thức tính số hạng tổng quát của cấp số cộng với công sai d và số hạng đầu u là1

A u nnu1n n 1d B u n   u1 n 1d.

C

1

1 2

n

n n

 

D

1

1 2

n

n n

Lời giải Chọn B

Theo định nghĩa ta chọn đáp án u n   u1 n 1d.

Câu 15. Cho cấp số cộng  u n

với u15;u2 10 Công sai của cấp số cộng đã cho bằng

Lời giải Chọn B

Cấp số cộng  u n

có số hạng tổng quát là: u n   u1 n 1d;

(Với u1 là số hạng đầu và d là công sai).

Suy ra có: u2 u1 d10 5 d  �d 5.

Vậy công sai của cấp số cộng đã cho bằng 5

Câu 16 Dãy số nào sau đây không phải là cấp số nhân?

A 1; 3; 9; 27; 54  . B 1; 2; 4; 8; 16 C 1; 1; 1; 1; 1  . D 1; 2;4; 8;16  .

Lời giải Chọn A

Dãy 1; 2; 4; 8; 16 là cấp số nhân với công bội q2.

Dãy 1; 1; 1; 1; 1  là cấp số nhân với công bội q  1.

Dãy 1; 2; 4; 8; 16  là cấp số nhân với công bội q  2.

Trang 7

Trang 8

Dãy 1; 3; 9; 27; 54  không phải là cấp số nhân vì 3 1.( 3);( 27).( 3) 81 54      �

Câu 17. Cho cấp số nhân  u n

với 1

1 2

u

và công bội q2 Giá trị của u bằng10

1

37

2

Lời giải Chọn A

Ta có:

1

10 1

1

1 2 2 2

2 2

u

q

� 

� 

Câu 18. Xác định x để 3 số x1; 3; x theo thứ tự lập thành một cấp số nhân:1

A x2 2. B x 5 C x 10 D x3

Lời giải Chọn C

Ba số x1; 3; x1 theo thứ tự lập thành một cấp số nhân

x1 x 1 32 x2 10 x 10

Câu 19. Cho cấp số nhân  u n

với u13;u2  Công bội của cấp số nhân đã cho bằng1

A

1

Lời giải Chọn A

Ta có:

2

2 1

1

1

3

u

u u q q

u

Câu 20. Cho cấp số nhân  u n

với 1 6

1

; 16 2

Tìm q?

A q � 2 B q 2 C q  2 D

33 10

q

Lời giải Chọn C

Áp dụng công thức số hạng tổng quát cấp số nhân ta có

n

uu q  �uu qq   �q  .

Câu 21. Cho cấp số nhân  u n

với u2 8 và công bội q Số hạng đầu tiên 3 u của cấp số nhân đã cho1 bằng

8

3

8

Lời giải Chọn B

Ta có:

2

8

3

u

q

Trang 8

Trang 9

TÀI LIỆU ÔN THI THPTQG 2021

Câu 22. Cho cấp số nhân có u13, q  Tính 2 u5

A u5  6 B u5  5 C u5 48 D u5  24

Lời giải Chọn C

Ta có: 4  4

5 1 3 2 48

uu q   

Câu 23. Cho cấp số cộng  u n

với u1 và 1 u4   Công sai của 26  u n

bằng

A 27. B 9. C 26. D 3  26

Lời giải Chọn B

Ta có u4  u1 3d �3d u      4 u1 26 1 27.

27 9 3

d   

Câu 24. Một cấp số nhân có số hạng đầu u1  , công bội 3 q 2 Biết S n 21 Tìm n ?

A n10. B n3.

C n7. D Không có giá trị của n

Lời giải Chọn B

Áp dụng công thức của cấp số nhân ta có:

   

1 1 3 1 2

21

n

S

q

Câu 25. Cho cấp số cộng  u n có số hạng đầu u1 11và công sai d  Giá trị của 4 u bằng5

Lời giải Chọn B

Ta có :

1

5 1

11

4 27 4

u

d

  

� 

Câu 26. Cho cấp số cộng  u n

có số hạng đầu u2  và 2 u3  Giá trị của 5 u bằng5

Lời giải Chọn C

Ta có: d u    3 u2 5 2 3�u4     u3 d 5 3 8�u5   u4 d 11.

Câu 27. Cho cấp số nhân  u n

có số hạng đầu u1 và công bội 2 q 2 Giá trị của u bằng6

Lời giải Chọn D

Ta có: u6 u q1 5  2( 2)5  64.

Câu 28. Cho cấp số cộng  u n

có số hạng đầu u3   và 1 u4  Công sai d bằng2

Trang 9

Trang 10

A 3 B 3C 5 D 2.

Lời giải Chọn A

Ta có: d u   4 u3 3

Câu 29. Cho cấp số nhân ( )u n

biết u1=3n Công bội q bằng

1

Lời giải Chọn D

1

1 3

3 3

n n

n n

u q

u

+ +

Câu 30. Cho cấp số cộng  u n

có số hạng đầu u1 và công sai 3 d  Tổng của 2019 số hạng đầu bằng2

A 4 080 399 B 4 800 399 C 4 399 080 D 8 154 741.

Lời giải Chọn A

Áp dụng công thức tổng n số hạng đầu của cấp số cộng ta có:

1

1

n n

2019.3 2019.2018 4 080 399   .

Câu 31. Cho dãy số  u n

với u n 2n1 số hạng thứ 2019 của dãy là

Lời giải Chọn A

Ta có: u2019 2.2019 1 4039  .

Câu 32. Cho cấp số nhân  u n

có số hạng đầu u12 và công bội q Giá trị 3 u2019 bằng

A 2.32018 B 3.22018 C 2.32019 D 3.22019

Lời giải Chọn A

Áp dụng công thức của số hạng tổng quát 1 n 1 2.32018

n

uu q   .

Câu 33. Cho cấp số nhân  u n

có số hạng đầu u1 và 2 u6 486 Công bội q bằng

3 2

q

2 3

q

Lời giải Chọn A

Theo đề ra ta có:

1 6

2 486

u u

� 

1

5 1

2

486

u

u q

� �

� �q5 243 3 5 �q3.

Câu 34. Cho cấp số cộng  u n

có  u1 và công sai 11 d  Hãy tính 4 u 99

Chọn B

Trang 10

Trang 11

TÀI LIỆU ÔN THI THPTQG 2021 Lời giải

Ta có : u99  u1 98d  11 98.4403.

Câu 35. Cho cấp số cộng  u n với u1 ; 2 d  Khi đó số 2018 là số hạng thứ mấy trong dãy?9

Lời giải Chọn B

Ta có: u n   u1 n 1d �2018 2  n 1 9 �n225.

Câu 36. Cho cấp số cộng  u n

u1 và công sai 1 d2 Tổng S10   u1 u2 u3 u10 bằng

A S10 110. B S10 100. C S10 21. D S10 19.

Lời giải Chọn B

* Áp dụng công thức

n n

n u u

ta được:

10

100 2

S ��  ��

Câu 37. Cho cấp số nhân u n

có số hạng đầu u1  và 2 u6 486 Công bội q bằng

3 2

q

2 3

q

Lờigiải Chọn A

Theo đề ta có:

1 6

2 486

u u

� 

1

5 1

2

486

u

u q

� �

� �q5 243 3 5 �q3.

Câu 38. Cho cấp số nhân  u n

u1 , công bội 3 q2 Khi đó u bằng5

Lời giải Chọn C

Công thức số hạng tổng quát của cấp số nhân: 1 n 1

n

uu q  .

Do đó u5 3.24 48.

Câu 39. Cho cấp số cộng  u n

, với u1 2, u5 14 Công sai của cấp số cộng là

Lời giải Chọn A

Gọi cấp số cộng  u n

có công sai d, ta có: u5  u1 4d �4d u  5 u1 14 2 12  �d 3.

Câu 40. Cho cấp số nhân  u n

biết u12,u2  Công bội của cấp số nhân đó là1

Trang 11

Trang 12

A 2B

1 2

1

Lời giải Chọn C

Vì  u n

là cấp số nhân, nên ta có:

2

2 1

1

1

2

u

u

Câu 41. Cho cấp số cộng  u n

u1 , 3 d   Số hạng thứ 10 của cấp số cộng đó là:2

Lời giải Chọn B

Áp dụng công thức số hạng tổng quát của cấp số cộng: u n   u1 n 1d

Ta có: u10  u1 9d 3 9 2   15

Câu 42. Cho cấp số nhân  u n

u2 2,u6 32 Công bội của cấp số nhân đó là

1 2

Lời giải Chọn B

Áp dụng công thức số hạng tổng quát của cấp số nhân: 1 n 1

n

uu q  .

Ta có:

1

5

2

u q u

Câu 43. Cho cấp số nhân u nu15, q Số hạng thứ 6 của cấp số nhân đó là2

A

1

Lời giải Chọn D

Áp dụng công thức số hạng tổng quát của cấp số nhân: 1 n 1

n

uu q

Ta có:u6 u q1 5 5.25 160.

Câu 44. Cho cấp số cộng  u n

với u12 và u2 6 Công sai của cấp số cộng đã cho bằng

Lời giải Chọn A

Ta có u2  �6 6 u 1 dd 4.

Câu 45. Cho cấp số cộng  u n

với u1 và 1 u2  Công sai của cấp số cộng đã cho bằng4

Lời giải Chọn C

Vì  u n

là cấp số cộng nên u2  u1 dd u    2 u1 4 1 3.

Trang 12

Trang 13

TÀI LIỆU ÔN THI THPTQG 2021

Câu 46. Cho cấp số cộng (un) với u13 và u2 9 Công sai của cấp số cộng đã cho bằng

Lời giải Chọn D

Ta có: d u   2 u1 6.

Câu 47. Cho cấp số cộng  u n

với u12 và u2 8 Công sai của cấp số cộng đã cho bằng

Lời giải Chọn B

Vì  u n

là cấp số cộng nên ta có u2  u1 dd u    2 u1 8 2 6.

Trang 13

Ngày đăng: 01/07/2022, 15:36

w