1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Các hệ tọa độ trong robot

44 61 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Các Hệ Tọa Độ Trong Robot
Tác giả C.B. Pham
Định dạng
Số trang 44
Dung lượng 1,38 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kỹ thuật robot (robotics) là kỹ thuật liên ngành bao gồm kỹ thuật cơ khí, kỹ thuật điện điện tử, kỹ thuật máy tính, nội dung của kỹ thuật robot bao gồm nghiên cứu, thiết kế, chế tạo, vận hành và áp dụng robot. Kể từ giữa thế kỷ 20 cho đến nay, robot ngày càng đóng vai trò quan trọng trong mọi hoạt động của con người như sản xuất, dịch vụ, y tế, nghiên cứu khoa học, quốc phòng…Chương này trình bày về lịch sử robot, cấu tạo và phân loại robot, các lĩnh vực áp dụng của robot, cung cấp các khái niệm cơ bản sẽ được nghiên cứu chi tiết trong các chương sau

Trang 1

describe the position and

orientation of this frame

with respect to some

reference coordinate

system

Trang 2

 C.B Pham 3-2

Description of a position

Once a coordinate system is established, any point in the universe can be located with a 3  1 position vector

Trang 3

 C.B Pham 3-3

and frames

Trang 4

 C.B Pham 3-4

Description of an orientation

-The complete location of the hand is still not specified until its orientation is also given

- A coordinate system (B) has

been attached to the body in a

known way A description of {B}

relative to (A) now suffices to give

the orientation of the body

Trang 5

 C.B Pham 3-5

Note: Rotation matrix are simply the projections of a frame

onto another frame

Trang 6

 C.B Pham 3-6

Example:

Trang 7

 C.B Pham 3-7

Note: In a rotation matrix, rows / columns are orthogornal unit vectors

and frames

Trang 9

 C.B Pham 3-9

and frames

Trang 10

 C.B Pham 3-10

Description of a frame

A frame is a coordinate system where, in addition to the orientation, we give a position vector which locates its origin relative to some other embedding frame

Trang 11

 C.B Pham 3-11

- It is concerned how to express the same quantity in terms

of various reference coordinate systems

• Mappings involving translated frames

Trang 12

 C.B Pham 3-12

• Mappings involving rotated frames

Trang 13

 C.B Pham 3-13

Example: Determine AP Given that a frame {B} is rotated

relative to frame {A} about 𝑍 by 30 degrees, with:

Rotation matrix

Trang 14

 C.B Pham 3-14

• Mappings involving general frames

Trang 15

01

P P

Trang 16

 C.B Pham 3-16

Example: A frame {B} is rotated relative to frame {A} about

𝑍 by 300, translated 10 units in 𝑋 𝐴, 5 units in 𝑌 𝐴 Determine

AP, given BP = [3.0 7.0 0.0]T

Trang 17

 C.B Pham 3-17

transformation

The same mathematical forms used to map points between frames can also be interpreted as operators that translate points, rotate vectors, or do both

• Translational operators

A translation moves a

point in space a finite

distance along a given

vector direction

Trang 18

 C.B Pham 3-18

To write this translation operation as a matrix operator:

The DQ operator may be thought

of as a homogeneous transform

of a special simple form

where qx, qy, and qz are the components of the translation

vector 𝑄

where q is the signed magnitude of the translation along the vector direction 𝑄

Trang 19

 C.B Pham 3-19

• Rotational operators

Another interpretation of a rotation matrix is as a rotational operator that operates on a vector AP1 and changes that vector to a new vector, AP2, by means of a rotation, R

transformation

In this notation, "RK()" is a rotational operator that performs a rotation about the axis direction 𝐾 by  degrees This operator can be written as a homogeneous transform whose position-vector part is zero

Trang 20

 C.B Pham 3-20

Trang 21

 C.B Pham 3-21

Example: Given AP1 = [0.0 2.0 0.0]T Compute AP2 obtained

by rotating AP1 about 𝑍 by 30 degrees

transformation

Trang 23

0 0

BORG

A A

As a general tool to represent

frames, a homogeneous transform

has been introduced That is a 4 x 4

matrix containing orientation and

position information

There are three interpretations of

this homogeneous transform:

Trang 24

BORG

A CORG

B A B

B C

A B A

C

P P

R R

R T

Trang 25

BORG

A A

B A

B

P

R T

We have:

Trang 26

0 0

BORG

A T A B

T A B B

A

P R

R T

Example: Frame {B} is

rotated relative to frame

{A} about 𝑍 by 300, and

translated 4 units in 𝑋 𝐴

and 3 units in 𝑌 𝐴

Trang 27

 C.B Pham 3-27

Determine:

Solution:

Trang 28

 C.B Pham 3-28

Transform equations

Trang 30

 C.B Pham 3-30

Example: Consider two rotations, one about X by 300, and one about Z by 300

Trang 31

 C.B Pham 3-31

Note:

Trang 32

 C.B Pham 3-32

• Rotate {B} first about by an angle  (roll)

• Then, rotate {B} about by an angle  (pitch)

• Finally, rotate {B} about an angle  (yaw)

Trang 33

 C.B Pham 3-33

Trang 34

 C.B Pham 3-34

• Rotate {B} first about by an angle 

• Then, rotate {B} about by an angle 

• Finally, rotate {B} about by an angle Xˆ B

B

Zˆ

B

YˆStart with the frame {B} coincident with a known reference frame {A}

Trang 35

 C.B Pham 3-35

Trang 36

 C.B Pham 3-36

If

If

Trang 37

 C.B Pham 3-37

Start with the frame

{B} coincident with a

known frame {A}; then

rotate {B} about the

Trang 39

 C.B Pham 3-39

Example: A frame {B) is described as initially coincident with {A} We then rotate {B} about the vector (passing through the origin) by an amount 

= 30 degrees Give the frame description of {B}

T A

]0.0 0.707

7070

0[

ˆ 

K

Trang 40

 C.B Pham 3-40

A frame {B} is described as

initially coincident with {A)

Then {B} is rotated about the

]0.0 0.707

7070

0[

ˆ 

K

Give the frame

description of {B}

Trang 41

 C.B Pham 3-41

Solution: define two new frames {A’} and {B’} so that their origins are at AP = [1.0 2.0 3.0]T and

Trang 42

 C.B Pham 3-42

We have

Trang 43

 C.B Pham 3-43

The term line vector refers to a vector that is dependent on its line of action, along with direction and magnitude, for causing its effects

Trang 44

 C.B Pham 3-44

A free vector refers to a vector that may be positioned anywhere in space without loss or change of meaning, provided that magnitude and direction are preserved

𝑉

𝐴 = 𝑅𝐵𝐴 𝐵𝑉

Ngày đăng: 07/07/2021, 23:01

TỪ KHÓA LIÊN QUAN

w