1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài giải mạch điện tử

480 812 1
Tài liệu được quét OCR, nội dung có thể không chính xác
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài giải mạch điện tử
Trường học University of Example
Chuyên ngành Electrical Engineering
Thể loại Bài giải
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 480
Dung lượng 23,5 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài giải mạch điện tử

Trang 2

Copyright © 2002 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458 All rights reserved Printed in the United States of America This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise For information regarding permission(s), write to: Rights and Permissions

Instructors of classes using Boylestad & Nashelsky, Electronic Devices and Circuit Theory, Eighth Edition, may reproduce material from the instructor’s resource manual for classroom use

10987654321 Prentice

Hall

ISBN 0-13-092212-9

Trang 3

Contents

Solutions to Problems in Text

Solutions to Laboratory Experiments

Prepared by Franz J Monssen

Test Item File

Prepared by Rajiv Kapadia

205

299

Trang 5

Chapter 1 (odd)

L1 An "ideal" device or system is one that has the character-

istics we would prefer to have when using a device or system in

a practical application Usually, however, technology only permits

a close replica of the desired characteristics The "ideal"

characteristics provide an excellent basis for comparison with

the actual device characteristics permitting an estimate of how well the device or system will perform On occasion, the "ideal" device or system can be assumed to obtain a good estimate of the overall response of the design When assuming an "ideal" device

or system there is no regard for component or manufacturing

tolerances or any variation from device to device of a particular lot

3 The most important difference between the characteristics

of a diode and a simple switch is that the switch, being mechanical,

is Capable of conducting current in either direction while the

diode only allows charge to flow through the element in one

direction(specifically the direction defined by the arrow of the symbol using conventional current flow)

Ch) Raed = C107 52cm ) LOS) 2 Pom = so

s ề Veen?) Shoe

“Re Key = Soxio 2

7 Intrinsic material: an intrinsic semiconductor is one that has been refined to be as pure as physically possible That is,

one with the fewest possible number of impurities

Negative temperature coefficient: materials with negative temperature coefficients have decreasing resistance levels as the the temperature increases

Covalent bonding: covalent bonding is the sharing of

electrons between neighboring atoms to form complete outermost

97 W=OV = (6C)(3V) = 185

il GaP Gallium Phosphide Ea =224eV

13 A donor atom has five electrehs in its outermost valence shell while an acceptor atom has only 3 electrons in the valence

15 Same basic appearance as Fig 1.9 since Arsenic also has

5 valence electrons (pentavalent)

Trang 6

Cc) For ve OV, eP=1 and T =TC 1-1) = Om

25 For most applications the silicon diode is the device

of choice due to its higher temperature capability Ge typically has a working limit of about 85 degrees centigrade while Si

can be used at temperatures approaching 200 degrees centigrade Silicon diodes also have a higher current handling capability Germanium diodes are the better device for some RF small signal applications, where the smaller threshold voltage may prove

33 Yry= Wea — O.Øv—-O?V _ o.09V_ 23.5

(relaTivel close Te wera gp vere ANT SS OAV:

37 Uom the Rest apr cimalinn Toth? corve bev ouck

b=eO.TIV :

1

— AVA = O8V-OTV _ OAV xà

KT2¿+ 2S«(-Oxl 25mÔ | + sẽ

Trang 7

39 As the magnitude of the reverse-bias potential increases

the capacitance drops rapidly from a level of about 5SpF with no bias For reverse-bias potentials in excess of 10V the capacitance levels off at about 1.5pF

tl Log scale: Tazzs%, Tp = 0.5mA

Tas 100°C, TL = 6OaÔ

the chaxmee Mo significant &OzÔ: O.S~xÑ = 120: 1

Hr -at GST Ie wirld mrcreara Co ca sTa xe with O.SmQÔ

C Z2S°c) and đe loliase the le„e0 cow") 19°C,

Inereasecdl semaiTi vituy mean Va27 OV

47 The transition capacitance is due to the depletion region acting like a dielectric in the reverse<~bias region, while the

diffusion capacitance is determined by the rate of charge in-

jection into the region just outside the depletion boundaries

of a forward-biased device Both capacitances are present in

both the reverse and forward-bias directions, but the transition Capacitance is the dominant effect for reverse-biased diodes and the diffusion capacitance is the dominant effect for forward-

Trang 8

‘the 20V Zener is thevefore = TTL x} the disTamce between

b.BV aunck Z4V meaauved tym the ©.8V anacteristic

The plots above reveal that fer the same

freg Vener, the hig4ee The permilMed coment

— LONE TAG with our expecIals ms

duration pulse, Phe, lower the fer the dvuralion of the prise

Trang 9

61 For the high efficiency red unit â Fìo.I.SE +

Trang 10

Chapter 1 (even)

2 In the forward-bias region the OV drop across the diode

at any level of current results in a resistance level of zero ohms - the "on" state - conduction is established In the

reverse-bias region the zero current level at any reverse-bias voltage assures a very high resistance level - the open-circuit

or "off" state -—- conduction is interrupted

4, Semiconductor: materials with conduction characteristics lying between those of a conductor and insulator Typically

materials whose conduction level is a function of the "doping" levels

Resistivity: that characteristic of materials that will determine level of opposition to the flow of charge (current)

through the material

Bulk resistance: (from additional reading and section

1.7) the actual resistance of a semiconductor material

Ohmic contact resistance: (from additional reading and section 1.7) the resistance introduced by the connection

between the metal lead and the semiconductor material

6 Copper has 29 orbiting electrons with only one electron

in the outermost shell The fact that the outermost shell with its 29th electron is incomplete(subshell can contain 2 electrons) and distant from the nucleus reveals that this electron is

loosely bound to its parent atom The application of an external electric field of the correct polarity can easily draw this

loosely bound electron from its atomic structure for conduction

Both intrinsic silicon and germanium have complete outer shells due to the sharing(covalent bonding) of electrons between atoms Electrons that are part of a complete shell structure

require increased levels of applied attractive forces to be

removed from their parent atom

8ö —

(O Z4&@eV =2+8Ct.oxio" 27) =76.8x19 “47

P= We 16.8210 _ 6,40 x107%

G.‡ xo 'Ä@ ;s xae ch ange arsociatedd wit A electy ms

12 An n-type semiconductor material has an excess of

electrons for conduction established by doping an intrinsic

material with donor atoms having more valence electrons then

needed to establish the covalent bonding The majority carrier

is the electron while the minority carrier is the hole

A p-type semiconductor material is formed by doping an intrinsic material with acceptor atoms having an insufficient number of electrons in the valence shell to complete the

covalent bonding thereby creating a hole in the covalent

structure The majority carrier is the hole while the minority

carrier is the electron

14 Majority carriers are those carriers of a material that

far exceed the number of any other carriers in the material

Minority carriers are those carriers of a material that are less in number than any other carrier of the material

16 :Same basic appearance as Fig 1.11 since Boron also

has 3 valence electrons (trivalent)

18,

Trang 11

20 Ty = 2Zo+273=293

b= tueoo/r = |, 600/2, Clow valle AV.) = S800

Tp = Ts (e® Ae 1) = Sox We SBME? 243 —!)

Cb) The resulT is expected ames the dicde cv rven\ under rexccs e—bvice

conditions shovid eqmad he satura Cio valud

2%: T+z2o“€C : 1, =0.1,A

T= 30% : T,=2(0ALÔ)= O2, Cdovbre cowry \O% vise im Temperature) T#4O°C : Z;<2CO.2A)z O8

Te SO°C ! T;=Z(o.2A)= O.®/A

T= bo°c : Tg=2C0.8yA) =1-6KA

lou sO => 16:1 suovecac dus To rise Un Teompuwatuve an c

30 (2) vy = AVA — O19V-O.70V _ 0O.03V — 352

AY, ISmA - SmA \OmÑ

(eb) vy a ZOmV L ZomV _ 20s

Trang 12

do ft Vpo =~25V, Tp=< —0.2nA and at Vp =—l00v, Ene —0.45nA

Although *he chan wa Lp 2 mere Man 100% the lwel 1 Te antl

he reaul Cig chom 34 as rdolivd, Smazid ra mosTageli tsÝ“M©O

42 Ie= 0.1mQ: Yy = 700Sz

Lle- L.SmA : rg = 702

Te= ZomA: rags 6s2 |

The resoits SURPOYT “the Sack ther “the dynamic or fe resislanca

deewreacen rapidly, with Aner ea Ina, current leuels

Trang 13

54: Te = - bVW x 100%

Vz CT —To) | _ CSV-4.8V) x\00%e = 0-053 %/2c

So Vr = 2,.0V which ‘s consider eloly hia her than "gen leg

silicon (X OV) For sau iTis @ ©.7T:1 raTio ound

(<) For C2*¬>ew«CS eater “thaw aWeron BOm-A the ;.=\ sex

is stom xe leas ham oe Ma Cr Coruna, Curr aats Ồ lessen

_

from Fig 1.552) +- = 275_

Cb) o.S => 4 =+to°

Trang 14

For (a) +b) levels of Vag amd Ip, are su close, Levels

2 Part Cc) ave reasmealbly close bul ao ‹%⁄oecLea dus To level

of “cc\ <4 volta se c

3 Load live throuah tp,= IOmÔ A AaackterisGics and Va=7V will

iIwtterseL Tp axis at ÌI 25mA

Ip =N25mA=E = =

with TC = 7V_ = O.©2eS2

1WzsmMmA ——-

5 ca) T=OmA ; dicde reverse—biaced

Cb) V› og = 20V—-O-1V = I9.3V C Kirchhoff vofas laws)

Trang 15

‘A Ca) Ge diode “ors” prevenT urs Si diode Lv um Tornaug Son"

13 Fer ¬+he goranel Si—2es2 bramches a Thevenucnm equanvalent will

result (£,, "on" dicches) xu “~ aasle sextes2 bvax ch a O.1V awd lke.sz

vesste>z as showre belou:

x Vv o=— Z2Yes CiOV—o.2V) ™\ - 2

Đ©.2V Ves2 ieaq + 2eSz 4 64.3v)

Ca, Két

2tw<st Ip= Leese = 3.ÌmÑ _ 1.55mQ

IS Both diodes “on” Vo = \OV— 01V =4.3V

17 Both diodes “olen, Vo = lov

I4 OV at one Cormincd is “more posiTive ” than —SV at -the other inwpeT Terminal There fore ascoume lower hode “on aud veper dice "off" The res (T:

Vo = OV —OCTIV =—O.TV the resv ll Sugporis the above assumELios

ar The Si diode re wireg mere Cor mine vo ITs hau “the Ge dhiods

Te Torn ton" neve be €, with SV ak both input Torminals, cooume

Si diode “off" and Ge diode "em"

the resvlT: Vo= SV -—- 0.3V = TV

The resuv CƯ svg gents the above ¿2o mo cơm

Trang 16

Cd) yes Lp = 20mA>D 18.36mA

Ce? LT giode, = 36-7IMA D> Ima, = 2O ca Ô

24 ["

⁄ ⁄

—IO©V

Piv = toov

3t “PosiTive col£e ye:

‘Toe te‡t Lode “of L", bollom left diode “oa”

NeceLive prise Vi:

"9 Aiod “open” Ve =OV

te) “PosiVive evise wu:

No = (ov =o.7V +SV =+.2V

NaeaaTive «se 4 A}c `

) © diode" open", *=OVv

Trang 17

For my < +.1v, Ak odie" off" amd N„eœ ae 5 7 —

(b) Agaun, diods."on" Aw i 24E7V buT No | = By

MSV defi ped oo ths vollose awoss the QioQa

Fax #„ > 4.1V, J2 = O.7V

For at, <4Ty, diode “off", Ip =Te= OmA aD Vp 2eg= TP COMA

Theo, 0 = 7 *V

â„ đy=Oov, Wu=—4V 4

i= — BV, Moz ~OV- AVE —l2y

i

©°

O,7V ees,

Va onan = ~L= o—

37 (a) STotung with Vi= —20v, the diode is Mn

Wa "En" sTate an whe capacitor gyri fey chante “2v

To — 2OV + Dorina this crTevuc2 A Tine Ve

is acrots the" m" chiods CohevT-crunt equivaterS )

anrQ Naz OV _

When AYc sưu: Tues te He +20V lev the Rioda etiovs tha

w offs stake Copea- CAA CAL cai vate„x) and Do = + jc = 2OV+20V= +dHoV

(b) STonTms, with Ni = —-20v, the diode s0 wr He" on" slave and

the cepactor quickiy change we to —ISV + Note thar Wi = +20V

Onhhe SV suggly ae eh bitive aerose the capacntor- buyì œ¿

this Time snteweal tx, is across "M" Keds and SV suegi4 ard

Trang 18

34% (a) P=RC = CS6ks2)CO.1 uF) = S.Ooms

Se= Zoms

Cb) SaazzBms >> = (MS =O0-5ms S6'!

CC) Posilive @v\se ó Oy:

Diode “om” am Vo= —2V + O0.7VEe —1.3V

Copaciter changes To 1OV+2V—O-TV = L3V

Trang 19

C hagter 2 C Even)

2.(a) 2b“ <“7zks

the load line exTends from Tp=2.2?mÑ To Vp=SV

Vig 8 OV, TpaŠ ZmA

The vesuiTing values

đ/ {eAA ÁS for own ZmA To 2

4f Ca) Tp=T+e= EÉ7Yb ~ 30V-O-1V _13.32mA

Vp = O.TV Ve= C-~Va- 3ov—o.vz23.3V

= O.43V, Is, *%2Z2.5mA

4 Vag ore << close whi le Ins -SmA

Qe) Ts= E-Vp_ 30V—OV — 13.64mA

_ + 2.2w# ~

Vp = OV, Vp = Sov

Uso, ewmea E >> Vr the lwels at and Ve one quite close -

© Ca) Diede gor wand-biaced,

Kirchhoff 's vo tage tau2C€w)): —=EV +,©.7V—Vo=C

Trang 20

Kiechhofl's voltage lacy > CCW)

+V, -O7V +5V =O

Vo = -— 4.3V

IO Cad) Both diodes for ward-biare®

Dez WvV-O-V ~ 2L t©omA

x ĐHnYLSs” = O-1V—-9.3V ~ 0.851mA | —= tt

TL CSiéi diode) Lis -< © 47K S2

192.3mA — 0.85imA 18.45mA

14 Beth diodes “off

iS tthe Si diode with —SV ae the cathode is "on" while “the cther-

is “off* the reso is

Ve = —SV+0.71V= —74.3V

ao Same alr he sustem Ver mnmsals ave at 10V “rhe re

abi CCevenca

re

OAV across ecther diode cawncl be established

thevefove, Beth diodes ana "olf" and

Trang 21

Fer % > O1TV Si diode is “on amd Ny = O.TV

Fov tty <= O.TIV Si diode opm and leet rae chee mina ed

by voltage divider role:

| N= \OES.Cwð.) = 0404,

1Osz + \kerw For c(c= —~t\OXw:

Trang 22

NeTwerk + "ow" diode Vo lass divider rule:

redrawy: ow 32.22 | Vo ano = ies iver)

ny & 3 2.2e2 “ye -

NegeTive hal Frenete 7) N° = SON

eo en” ied TPolaatto 3 Vo aewoes the 22ksz

Si diode ogen fo positive pvuise J: ane Ay,= Ov

For =2OV < %( <—-0.7V diode “on” amd ja¿=c+O<IV

For ; < -20V, 2 z~2OV +O7V= -19.3V For ay, = -O.1V, No= — 0.1V40.1V =OvV

Yo

Ov

18

Trang 23

Cb) For ar; = SV the SV batter y will insore, the diode is for wand-biaved

Fer 4 = 2OV the duode ¡šs vecrse~bìoe4L AxẢ Mạ= ON

For #(Z-—SV, Wi overgowers the Zv baler amd ~the divde is “on”

Peening Kivchhelfis volta sz lew sn he chocle wise

For 17,2 2ZOV the ZOV level ovexeotusex€ the SV supe!y

is “ou Ucame, the shorl— civreviT equ sven for the eliode we find

wee Aes ZOV

For Ax, = -5SV, both Vi and the SV cupely

and separate Vy Com No - However, Wt, ig conmedcdeeh Aired sv

through the, 2.2esz resistor To the SV sugely aud a=

aonmd the diede

reverse —biae the diods

36 For the positive "e2 ơn Se:

the vighT Si Aioke is reverse~ btzo e4

the le Sc Si Mode is Yon’ Aor levels que avedter thaw

S.3V+0.1V= OV Io fac, SO= Or ee

Fer Ax <6V both diodes ore yaar amd =

For the ALG ATI ve region av:

the le fr Si dio ts reverse-biaced

the righT Si diode is “on " der Nevels Ave mM Ow € Usgabive,

than 7.3V +O.1V= 8V tan, 2 ¿=- 8V + 7, <S-V Fer *; >—~SV bom diodes ave reverse—biaced)

đu Woe 02

19

Trang 24

VN

Ce: For ~=8V< Je ZOV thewe is MO CoMnOrc cư throug k he 10 ese

resistor due To the lace 4, a complete cirwit theve fove., Ug = Omél For #¿ >GV

Wo = 4t —Q = đc —=@V Fø~+ Ay; = \OV) Ve = 10V-6V= +v

t\OwsS2, For Ac = - BV

38 (a) For meaative nat’ eye capacter chaAses To pease vols

IZOV—OSTV = 119.3V with golait C— ——+›) the ovtevT We is

direcy aucose the “om" diode resvu (Tang Aw 2= —OTV 20 o negeTi ve

geak VaR Ae

Fey ‘the megT positive hail cycle Ay, = ATL + NG SV with a een value ở A2 \ZOV +ì14.3V = 244.3V

(b) For positive half cact+ <acaAc+.Gex c e^aes To peak va tu

“ở IZOV -2ZOV-O-TV = 44.3V œiYh polaAffu C+ —C —) - TA€ ooless

œ 2OW +>O.1V= 290.1V

° ¬ ment magetive half “ca AY, = Jz, ~ 44.3V Loi th wagats ve

eeale value ở A72 = —\2oV—~44.5V = —214.3V

Trang 25

Uosmns, the iclecQ dicks operovimed ion the vewTicat shift 4 EXT ca} work

be 120V vecthertham 119.3V and -100V rather tham —919.3V dere ẹ2+~C Co) 2e

the idec® dincdsa appronmation w mick ceAToina ly be Hep erogrivk tar Chis

VL=3V< V„ = 10V and diode wm-emduckin

there Love, L.= Le = <=OV —= SOmA

22O<Z +\90S¿,

ama Vi = av

Ce) IW the absence A the Zener diode

UTOS2 + 220Su

VL= 13 62> Vz = \Ov ond Low diode “on"

Therefore ViL=\OV and Vez,= ISV |

Le,= VR sie = 19M 2052 45 Hn5mA

re, will occur when Te X2 C vM 4c) 2F, The maximum “Re

Ul sa Torm Atom ive +ha magimum permissible level 2 Ve

21

Trang 26

Tz ew = Tưng = OOmMN _ SOmA

Any valat We that oceeda 15.86 will resutT Mma AcurvenvT

+z that ws ill epceed the mMatimum vaelur

| Fey ar: = - SOV: |

Z, Peverse biaoeh ap the Zener eoteaTicl and Vz, = —\OV

Ze forward bi ok «Ac“© 1V

ha c te, Voz Vz,+ Vz,= —lO.TV

Fora SV-s Udas WAWE NLither Zener Brodie will reach its

Zener poTeuTicR Iv fact, for etther polarity ‹+‹ ome Zener Mods

will be wan an GPM- Arcuil state resu Tang aw Wy rE

Trang 27

+%œ = kL +I, =1001, +I, = tot

Ie= Te _ Đm _ 74 ca ” tỒI “ c1

Tc = \OoTg = \OO C74.21L8)= '7/421mÔ

Te =SmA, Vog='V: Vee = 800mvV

Veg~= \OV: Vag = T7IOmV

Vce = 2OV: Vee = 7SOmW

it

the chaneg m Veg so 20V: iv = 20:1

the rewitrig hhanae A~ Veg 2 ØX>mYV : 1SOmV = LOT L (very slic hT )

13 Cay Ke = Tg =4.5mA

(by I, 2Te =45mA

Ce, megligible: change cannot we cdeTecle® ơn this sed A paradiovisTics

Trang 28

Ca) Cae cdloes cham‹* Lown et To ev om the chanacTeris vices

Low Ie, high Vee —> lig hee beTas

High Tp, low Vee —> lower betas

a5 Gace = TE = 24mA _ iG

Commm- emiler Maouv hhoaKeristies ma4, be cô

directly Lev cCommm-collecAor eeQerleaTioms

S Te=Temay » Vee = Femar = 30mW 2 sy

Te mon GmA

Ve= Veg „2 Le= Pe may = 32omw _ 2=

Vez isvV ents

Te ~ 100mA

Vee =20V, Te = TP mac „ 6259-3255

2ov Vee

24

Trang 29

35 hee (Ode) with Veg = LV, T= 25°C

+c= O.1mA, hee = 0.43Ci00)= aie

Tc= LO mÔ, Nee = O.38(ioo)= 48

hee fac) ws with Vee =10Ov, T= 25°

I¢= Loma, ho, = 160

For both hge and ho, the came movcan par collector c{vxvew€ vesu (Te«Ð, Lin a aimilan mMmaeweasce (relatively “e2 449) x6 te 245046616

the lewelo ar hig her dv hte but wote thar V.- is highev aro

3T (4©) 2A“ Xc zImÔ, he, = '!20 |

Qe Te=lomf, he = 160

Ce) “The vecu(Fs am-firm he emclusios ervebiems ZR anL2+t her

BeTa Tends To mroreaanr with inereaoamg ce \lechor~ curreaL

34 (a) Q, = ~ lomA-12.2mA _ 3.5mA = 140

ATs \ Wee <3v sưa na zoxÐ

Pac Ign 54/54A =£

Ce) = *mA- 2m8 = ZmA = 200

(Fac ta ~ BA to»8 ——”

€2 Cy.2 te= 3mA = 230.17 TA 1SKA

Ce) In both caqeo (Jae is slightly

C£) (a)

lw ajenew ah Cac + Gas Mat eaae with SAA Wena Le ** 4:x 9 Vee

and bo đdtcrc2e“- cđ*a cv đ@⁄2 levels Vee Lor o Fi XeQ Le

Howwer, ch Ie ppmwvesacs while Vee đa €2

when wer

Tevet AG Two wets xa «be Un Gaehuwisiics chamag oon Ha

level Cae or Bac 22A Mat ch G61 aognrd toc TY la co coxv 94,

the ISK ethan pan Cr C008 avr Co OAA be jpAn Cd Tew (AvvcAA

an He sec tên 2 Âoprce-.e sr Vee “the obove doko anweeleo

her who ~¬ & cv pestil: [iT eta ca tte Revate «A P ons

higher tham Pac C8 to%)

25

Trang 30

Chapter 3CEven)

z A bieolar Cramucter ulilizes holes and elecTrooms wa the AẬ£cUì or Manage Siow process, while umipolar devices uli lize

either elecirms or holes, but TT both, saan Khe Ananse -hou› process

++ The leakage current Leo is the miver: to Carrie Curremld ma

44 (a) Uaamg Fig 3.7 fwsT, Te # TmÔ

Then F:ạ3.® resuviTs man Tc*# 7mÑ

Co) Uax2a Fiạ5.84sĩ, Tự Š SmA

then Fig 397 resuiTs wm Vee = O-18V _

Ce) t©42^3 Fig 3,\OCb) Te = SmA resolTs ivy Va = 0-81V

(3) loa Fia 3.10 C<) Te = SmA cesutls m Vee =Ọ1V

Ce) Ure, the ol {flow enn ce mr levels “vec cav- be tamexek

most ogplications if volTa ses 4 ereR volTs art pres

20AI Fig B14 Cb): Te = 354A

Fig 3.1% Ca) IT S3.6mA

by Fig 3.14 (2) > Vee 5 2.5V

Fis 3.14 Cb): Vee = O12V

22 Cay Fig- 3.14Ca): IL-6 = 0.3mA

=CI—9.4426)C9.3m8)

= 2h

26

Trang 31

(Aa) Fae doec cha from coiC Te gost om the cÑaA acÏQev-tsNtc.$ The hig hetT vckue war ob tamell ch a highew lewe 2 q Vee And lower level Ate the Sepev o Tio beTivecee Ip corves is the greates

As x, deureased the levue® Cae and Œa‹ pncrea sede

Dole thas the ler eZ Cae and Dae ran the conley +ta active résimm is close THe TC Axe%v ve9,©_ of Le lew ele xu sư» ng

lw each case Mac '5 lar “thon ae with the leacl Ai fevence

oeeursse MA Corr Lew the active resww

Trang 32

36 As; the revevse.-biac PoVenTia® ÀLÀLCVGAO.o2 A44 ‘Toke the

AA~@ capacitance Cito deo 64909 C Fig 3.230))- lworesow

revurse —biao Qotentiale Cawes he wihh the SG Hàm

reeion Toh movearze hy reduces tác ALT aucr

CO € Aye

38 AT T= 10mA, hee = 0-48 (mormalized) @ 25°C

hee Sets © “ứ )@ \25"C Nice = O.S\ € “ )›@2-S5Sc_

Assumi 3100 e&F 25° will resol im w€la

ar S\ _~ss°c—-a@ @%

soort™ 145 at 125°C

ằ- Seat ARAM gh ~ AS wa mutT be

Cm sidered pir ~ehe 2ưste^ g@h-2z^~—

28

Trang 33

2 eee = Vee — Teg Re = WOV—C2.43mANZ TKR) = 8.04V

C Ve = Ve€,, = &.04V

C) Ve - Vag = O.7N

Csac J vs

chì TP =Veeg tes = (10.15V)(3.44mA) = 36.55 mW

(é) Pe = Vee (ie +Ts) = 2IV(3-4mA+ZSHA) = WAZ)

MD Vee =Ve-Ve = 76ev~2.4V = S.2V

(e) Vg = Vee +VeE= ©rTV+2.HV= 3.\N

% Le set = Nec = Zov_ = 20ov_ = SismA

Boeke Z2 WstkSEs> 444v

29

Trang 34

©¿89 UhaGi MA :

(A) Problem 6 Tc2 =3-22m@, Voc„= 8.e\V Cửa, = 240,8)

Œ) Tạ = Vcc~ YAc We&€ 20v-0.1V

Per cđxÒ)ve SioKse + (15041901 529

Te = 0 Teg = iSO) 26.21HAI= 3.43mA

Veeg = Vee Ve CKe +e )

= Foy —(3-4BmAY(Z HeSe +1552) = AETV

(b) Ve siteRe = Fe = C1.28mACZese) = 1 SAV

Co) Vg = Vge +Ve = O:1V+LSA4V = 2.244V

(a) “R= Vey 7 Ve,= Vee -Ve = \(BV—2.214V= 15.16N

Tey te Etats YS Z2WV Loy ' : Cae, Stee 7 Sor mA

“= ‘Fi = \S:76V = 34.4 ft

+%, o.+mAa

iS Teves Nee = lev _ - 16V =%.44mÔ

B+Ce Z.4wœ ~O.©&kSe 'ì5oÈS© —T

IT CO) Ry = RNR, = 234 ((8.2€sv = G:16ksv

Ex, = WeNee S2ee OSV) = 3.13V

Cyr Kez 24E + 9.¿k%¿

Tg= Em-VWe€ = >- nn „ 3.\2V—G-TV 22M” `

#m+(@+Yf£ G18ef++C(z0)Ce )

= zw3V = \4.o2 (27 TÔkESe

Trang 35

| 103 Bese Z SO.4eSt Che cleo)

AVT(2) Problem io: Agere imate yvoa A: = 2.43mA , Vee a= 1.5SV

Proble^ VÌ: ExAeYAxeaÐasi$: Tc a<2/26m,Voc= 8.2V

ca<«f#L Co chem mstrate tha

The ade sot M will be emp

oHeer qe homes 4 24 sả vưx(móÀ 2ovoe^

wo ne 4ezuiT aw 2% =o*% oR HEV = OH,

(b) Problew 17: Ema 3.\3V,Ena< 618052

Fer sitoal ime where 2 Re P10Rs the cha stn he, ond /ev Vee

durr To arsmPicawy Lrauge z.(® will be veto sword,

CA) %ATc=2.\3% vs ++4.83°%& se cyxekkz~ 1

% ANes = 2.68% VS “4G.70% fov grobleus \\

-đ^v cher tam §; yal, oH cum sihew oly less FAST tU€,

Trang 36

Te = (3 Tg = (100)(20.0H%.A) =2.01mA

Co) Ves Vee -X%&

= 20V — C2.0ImAXKS.2KL) = BOV— 12.462V = VISAV

CO) Ve eTele SRle = (2.01mA Sk) = 5 02V

(4) Vege = Vee — 1ÄC€c+fte) #3ov C2 01m AC O.Z2ER +1.SK2)

= 4.52v

as iW s2=— OS2., Re = Sokse

Ig= Vec- Vee = \2V~@©.1V

Fuu \WMs7: Ea = loookse +150k2 = LISORS2 =\\SMs

Tg = Vec - Vee _ \2V-O-1V

Rex GiWere) 1ismsz+ SOMA TMESZ+3.3 ve)

A4 (2e >\OE„ set sR fie” War ExareAggroade:

Wctweork redraws To ae Cax mine the ~TỈAcU ca *+»2 “w4vleÐL :

Trang 37

2OV =IOmÔ => ZOV © mA a> She= AY =2$2

Ss eee

“Ke = 4s = \.cs2 Tp=te = SmA _ 1.67 4A

Vito = Vec- Ve = ZBV —\9S.6NV =&® 4V

Ec= W& ~ 8.4V = t1eÐveg Cuac 6®)

Trang 38

Solvivo fe, = S2.152 sz (uar Siks2) STauonreR 632, |

“Wes 43ke

| ®%c + O.c2t©

34 (2) Ooa ~cXreœ CC pwn he ben cireit”

Bonk crmmecTime A emiller Ten mivocQ,

Dawmnaced Trauaoler-

(5) ShovTeR base, -emiller uu cli vn—

Oem ot coilechor Tew mine cR_

Ce) Open cancurT sn bone circeoiT

Opm TCrannivleorcm

_#I C2) Rat Teh Tet, Vt

co) (3+, Te‡

Cc) umelnoma2ah, De gee MOT a fam tim dl (?

Cel) Vee+ ) Tet, Ley -

Ce) 24, Te, Vecr, Veet, Veet

1O5kS2 SF 16Okst Ceohecho)

Uce “te ox in ahe 2z@roa+_'

Ve, > \GVS+ (=22V) = —3.SV

lose + B2ksz

Ve = Var 0.7V=-3.549V tO.7TV = ~2.e4v

T=le = VE/Ce =2 .isve= ^- 8S

Tạ =+Lc = 3.8S5mA =11.S Set = TSA

34

Trang 39

=@0(4.a@) +(42 <+OZ£S)CO.2V) +C32.Soxvø °")C22.S5)

= 842x\o +0.384 xioo" tA + 7.326% 3Ơ

“km +3 “IRE 7.494 RS2 +(81)C0.68k2)

— = =—Ì.€ ~s

7.44 esz + SS,08RS2 Le

©) sự)= Feit Rryfeed 2 i TimAC + FA4ER/0.68 RR)

Œ,C (+ Cz +R fre ) BOL 14100 +7194RIZ/0.68 RZ )

a=?

owe 1 71m@A (12.6 8) = 2.41% 107"A

Bo v42 68) ~—————

(a) AT = SCT/2)ATc„ +SCVse)Vse * s(@) 8£ |

= C\\.OĐ)C \Ộ ~o.2~@) +C—1.21xvG73S)CO.5V~ OTV)

ï yee Steo) SCVee) S@)

Colleclor Feedbade 83.629 ~\.426x\G *S -{ gd xvo"® Â

E miller- bias T8.\ —1.S1 % vo1s AL xio~FA

VolTace = divider W.0% A2.7xX10O™4S 2.dtxìioO” sÀ

Eired—bias Q\ —\.42zx:o-*4S 32.S@x\o” PR

35

Trang 40

SCL.) * Consider cloly less fer the vo Tass divider amfi Seratin com pared Uo the otha hree

SVee): The volTace - divider con fioguraTiom is move Sensitive thaw the othov three (which hane similar levels SomeiTiv ita) |

s(B) : the vo ~ Ø\?v t e4 am ia vraGio is the leasT seuss Tive with the £ teed bias emfisur ot m vew 4 Ssemsitive

\ wc, he volt ~ davider eavtis oraTiom is the le

SeusiTive with the fin ~biaew he mote PeusiTive

36

Ngày đăng: 13/12/2013, 16:29

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w