Bài giải mạch điện tử
Trang 2Copyright © 2002 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458 All rights reserved Printed in the United States of America This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise For information regarding permission(s), write to: Rights and Permissions
Instructors of classes using Boylestad & Nashelsky, Electronic Devices and Circuit Theory, Eighth Edition, may reproduce material from the instructor’s resource manual for classroom use
10987654321 Prentice
Hall
ISBN 0-13-092212-9
Trang 3Contents
Solutions to Problems in Text
Solutions to Laboratory Experiments
Prepared by Franz J Monssen
Test Item File
Prepared by Rajiv Kapadia
205
299
Trang 5Chapter 1 (odd)
L1 An "ideal" device or system is one that has the character-
istics we would prefer to have when using a device or system in
a practical application Usually, however, technology only permits
a close replica of the desired characteristics The "ideal"
characteristics provide an excellent basis for comparison with
the actual device characteristics permitting an estimate of how well the device or system will perform On occasion, the "ideal" device or system can be assumed to obtain a good estimate of the overall response of the design When assuming an "ideal" device
or system there is no regard for component or manufacturing
tolerances or any variation from device to device of a particular lot
3 The most important difference between the characteristics
of a diode and a simple switch is that the switch, being mechanical,
is Capable of conducting current in either direction while the
diode only allows charge to flow through the element in one
direction(specifically the direction defined by the arrow of the symbol using conventional current flow)
Ch) Raed = C107 52cm ) LOS) 2 Pom = so
s ề Veen?) Shoe
“Re Key = Soxio 2
7 Intrinsic material: an intrinsic semiconductor is one that has been refined to be as pure as physically possible That is,
one with the fewest possible number of impurities
Negative temperature coefficient: materials with negative temperature coefficients have decreasing resistance levels as the the temperature increases
Covalent bonding: covalent bonding is the sharing of
electrons between neighboring atoms to form complete outermost
97 W=OV = (6C)(3V) = 185
il GaP Gallium Phosphide Ea =224eV
13 A donor atom has five electrehs in its outermost valence shell while an acceptor atom has only 3 electrons in the valence
15 Same basic appearance as Fig 1.9 since Arsenic also has
5 valence electrons (pentavalent)
Trang 6Cc) For ve OV, eP=1 and T =TC 1-1) = Om
25 For most applications the silicon diode is the device
of choice due to its higher temperature capability Ge typically has a working limit of about 85 degrees centigrade while Si
can be used at temperatures approaching 200 degrees centigrade Silicon diodes also have a higher current handling capability Germanium diodes are the better device for some RF small signal applications, where the smaller threshold voltage may prove
33 Yry= Wea — O.Øv—-O?V _ o.09V_ 23.5
(relaTivel close Te wera gp vere ANT SS OAV:
37 Uom the Rest apr cimalinn Toth? corve bev ouck
b=eO.TIV :
1
— AVA = O8V-OTV _ OAV xà
KT2¿+ 2S«(-Oxl 25mÔ | + sẽ
Trang 739 As the magnitude of the reverse-bias potential increases
the capacitance drops rapidly from a level of about 5SpF with no bias For reverse-bias potentials in excess of 10V the capacitance levels off at about 1.5pF
tl Log scale: Tazzs%, Tp = 0.5mA
Tas 100°C, TL = 6OaÔ
the chaxmee Mo significant &OzÔ: O.S~xÑ = 120: 1
Hr -at GST Ie wirld mrcreara Co ca sTa xe with O.SmQÔ
C Z2S°c) and đe loliase the le„e0 cow") 19°C,
Inereasecdl semaiTi vituy mean Va27 OV
47 The transition capacitance is due to the depletion region acting like a dielectric in the reverse<~bias region, while the
diffusion capacitance is determined by the rate of charge in-
jection into the region just outside the depletion boundaries
of a forward-biased device Both capacitances are present in
both the reverse and forward-bias directions, but the transition Capacitance is the dominant effect for reverse-biased diodes and the diffusion capacitance is the dominant effect for forward-
Trang 8‘the 20V Zener is thevefore = TTL x} the disTamce between
b.BV aunck Z4V meaauved tym the ©.8V anacteristic
The plots above reveal that fer the same
freg Vener, the hig4ee The permilMed coment
— LONE TAG with our expecIals ms
duration pulse, Phe, lower the fer the dvuralion of the prise
Trang 961 For the high efficiency red unit â Fìo.I.SE +
Trang 10Chapter 1 (even)
2 In the forward-bias region the OV drop across the diode
at any level of current results in a resistance level of zero ohms - the "on" state - conduction is established In the
reverse-bias region the zero current level at any reverse-bias voltage assures a very high resistance level - the open-circuit
or "off" state -—- conduction is interrupted
4, Semiconductor: materials with conduction characteristics lying between those of a conductor and insulator Typically
materials whose conduction level is a function of the "doping" levels
Resistivity: that characteristic of materials that will determine level of opposition to the flow of charge (current)
through the material
Bulk resistance: (from additional reading and section
1.7) the actual resistance of a semiconductor material
Ohmic contact resistance: (from additional reading and section 1.7) the resistance introduced by the connection
between the metal lead and the semiconductor material
6 Copper has 29 orbiting electrons with only one electron
in the outermost shell The fact that the outermost shell with its 29th electron is incomplete(subshell can contain 2 electrons) and distant from the nucleus reveals that this electron is
loosely bound to its parent atom The application of an external electric field of the correct polarity can easily draw this
loosely bound electron from its atomic structure for conduction
Both intrinsic silicon and germanium have complete outer shells due to the sharing(covalent bonding) of electrons between atoms Electrons that are part of a complete shell structure
require increased levels of applied attractive forces to be
removed from their parent atom
8ö —
(O Z4&@eV =2+8Ct.oxio" 27) =76.8x19 “47
P= We 16.8210 _ 6,40 x107%
G.‡ xo 'Ä@ ;s xae ch ange arsociatedd wit A electy ms
12 An n-type semiconductor material has an excess of
electrons for conduction established by doping an intrinsic
material with donor atoms having more valence electrons then
needed to establish the covalent bonding The majority carrier
is the electron while the minority carrier is the hole
A p-type semiconductor material is formed by doping an intrinsic material with acceptor atoms having an insufficient number of electrons in the valence shell to complete the
covalent bonding thereby creating a hole in the covalent
structure The majority carrier is the hole while the minority
carrier is the electron
14 Majority carriers are those carriers of a material that
far exceed the number of any other carriers in the material
Minority carriers are those carriers of a material that are less in number than any other carrier of the material
16 :Same basic appearance as Fig 1.11 since Boron also
has 3 valence electrons (trivalent)
18,
Trang 1120 Ty = 2Zo+273=293
b= tueoo/r = |, 600/2, Clow valle AV.) = S800
Tp = Ts (e® Ae 1) = Sox We SBME? 243 —!)
Cb) The resulT is expected ames the dicde cv rven\ under rexccs e—bvice
conditions shovid eqmad he satura Cio valud
2%: T+z2o“€C : 1, =0.1,A
T= 30% : T,=2(0ALÔ)= O2, Cdovbre cowry \O% vise im Temperature) T#4O°C : Z;<2CO.2A)z O8
Te SO°C ! T;=Z(o.2A)= O.®/A
T= bo°c : Tg=2C0.8yA) =1-6KA
lou sO => 16:1 suovecac dus To rise Un Teompuwatuve an c
30 (2) vy = AVA — O19V-O.70V _ 0O.03V — 352
AY, ISmA - SmA \OmÑ
(eb) vy a ZOmV L ZomV _ 20s
Trang 12do ft Vpo =~25V, Tp=< —0.2nA and at Vp =—l00v, Ene —0.45nA
Although *he chan wa Lp 2 mere Man 100% the lwel 1 Te antl
he reaul Cig chom 34 as rdolivd, Smazid ra mosTageli tsÝ“M©O
42 Ie= 0.1mQ: Yy = 700Sz
Lle- L.SmA : rg = 702
Te= ZomA: rags 6s2 |
The resoits SURPOYT “the Sack ther “the dynamic or fe resislanca
deewreacen rapidly, with Aner ea Ina, current leuels
Trang 1354: Te = - bVW x 100%
Vz CT —To) | _ CSV-4.8V) x\00%e = 0-053 %/2c
So Vr = 2,.0V which ‘s consider eloly hia her than "gen leg
silicon (X OV) For sau iTis @ ©.7T:1 raTio ound
(<) For C2*¬>ew«CS eater “thaw aWeron BOm-A the ;.=\ sex
is stom xe leas ham oe Ma Cr Coruna, Curr aats Ồ lessen
_
from Fig 1.552) +- = 275_
Cb) o.S => 4 =+to°
Trang 14For (a) +b) levels of Vag amd Ip, are su close, Levels
2 Part Cc) ave reasmealbly close bul ao ‹%⁄oecLea dus To level
of “cc\ <4 volta se c
3 Load live throuah tp,= IOmÔ A AaackterisGics and Va=7V will
iIwtterseL Tp axis at ÌI 25mA
Ip =N25mA=E = =
with TC = 7V_ = O.©2eS2
1WzsmMmA ——-
5 ca) T=OmA ; dicde reverse—biaced
Cb) V› og = 20V—-O-1V = I9.3V C Kirchhoff vofas laws)
Trang 15‘A Ca) Ge diode “ors” prevenT urs Si diode Lv um Tornaug Son"
13 Fer ¬+he goranel Si—2es2 bramches a Thevenucnm equanvalent will
result (£,, "on" dicches) xu “~ aasle sextes2 bvax ch a O.1V awd lke.sz
vesste>z as showre belou:
x Vv o=— Z2Yes CiOV—o.2V) ™\ - 2
Đ©.2V Ves2 ieaq + 2eSz 4 64.3v)
Ca, Két
2tw<st Ip= Leese = 3.ÌmÑ _ 1.55mQ
IS Both diodes “on” Vo = \OV— 01V =4.3V
17 Both diodes “olen, Vo = lov
I4 OV at one Cormincd is “more posiTive ” than —SV at -the other inwpeT Terminal There fore ascoume lower hode “on aud veper dice "off" The res (T:
Vo = OV —OCTIV =—O.TV the resv ll Sugporis the above assumELios
ar The Si diode re wireg mere Cor mine vo ITs hau “the Ge dhiods
Te Torn ton" neve be €, with SV ak both input Torminals, cooume
Si diode “off" and Ge diode "em"
the resvlT: Vo= SV -—- 0.3V = TV
The resuv CƯ svg gents the above ¿2o mo cơm
Trang 16Cd) yes Lp = 20mA>D 18.36mA
Ce? LT giode, = 36-7IMA D> Ima, = 2O ca Ô
24 ["
⁄ ⁄
—IO©V
Piv = toov
3t “PosiTive col£e ye:
‘Toe te‡t Lode “of L", bollom left diode “oa”
NeceLive prise Vi:
"9 Aiod “open” Ve =OV
te) “PosiVive evise wu:
No = (ov =o.7V +SV =+.2V
NaeaaTive «se 4 A}c `
) © diode" open", *=OVv
Trang 17For my < +.1v, Ak odie" off" amd N„eœ ae 5 7 —
(b) Agaun, diods."on" Aw i 24E7V buT No | = By
MSV defi ped oo ths vollose awoss the QioQa
Fax #„ > 4.1V, J2 = O.7V
For at, <4Ty, diode “off", Ip =Te= OmA aD Vp 2eg= TP COMA
Theo, 0 = 7 *V
â„ đy=Oov, Wu=—4V 4
i= — BV, Moz ~OV- AVE —l2y
i
©°
O,7V ees,
Va onan = ~L= o—
37 (a) STotung with Vi= —20v, the diode is Mn
Wa "En" sTate an whe capacitor gyri fey chante “2v
To — 2OV + Dorina this crTevuc2 A Tine Ve
is acrots the" m" chiods CohevT-crunt equivaterS )
anrQ Naz OV _
When AYc sưu: Tues te He +20V lev the Rioda etiovs tha
w offs stake Copea- CAA CAL cai vate„x) and Do = + jc = 2OV+20V= +dHoV
(b) STonTms, with Ni = —-20v, the diode s0 wr He" on" slave and
the cepactor quickiy change we to —ISV + Note thar Wi = +20V
Onhhe SV suggly ae eh bitive aerose the capacntor- buyì œ¿
this Time snteweal tx, is across "M" Keds and SV suegi4 ard
Trang 1834% (a) P=RC = CS6ks2)CO.1 uF) = S.Ooms
Se= Zoms
Cb) SaazzBms >> = (MS =O0-5ms S6'!
CC) Posilive @v\se ó Oy:
Diode “om” am Vo= —2V + O0.7VEe —1.3V
Copaciter changes To 1OV+2V—O-TV = L3V
Trang 19C hagter 2 C Even)
2.(a) 2b“ <“7zks
the load line exTends from Tp=2.2?mÑ To Vp=SV
Vig 8 OV, TpaŠ ZmA
The vesuiTing values
đ/ {eAA ÁS for own ZmA To 2
4f Ca) Tp=T+e= EÉ7Yb ~ 30V-O-1V _13.32mA
Vp = O.TV Ve= C-~Va- 3ov—o.vz23.3V
= O.43V, Is, *%2Z2.5mA
4 Vag ore << close whi le Ins -SmA
Qe) Ts= E-Vp_ 30V—OV — 13.64mA
_ + 2.2w# ~
Vp = OV, Vp = Sov
Uso, ewmea E >> Vr the lwels at and Ve one quite close -
© Ca) Diede gor wand-biaced,
Kirchhoff 's vo tage tau2C€w)): —=EV +,©.7V—Vo=C
Trang 20Kiechhofl's voltage lacy > CCW)
+V, -O7V +5V =O
Vo = -— 4.3V
IO Cad) Both diodes for ward-biare®
Dez WvV-O-V ~ 2L t©omA
x ĐHnYLSs” = O-1V—-9.3V ~ 0.851mA | —= tt
TL CSiéi diode) Lis -< © 47K S2
192.3mA — 0.85imA 18.45mA
14 Beth diodes “off
iS tthe Si diode with —SV ae the cathode is "on" while “the cther-
is “off* the reso is
Ve = —SV+0.71V= —74.3V
ao Same alr he sustem Ver mnmsals ave at 10V “rhe re
abi CCevenca
re
OAV across ecther diode cawncl be established
thevefove, Beth diodes ana "olf" and
Trang 21Fer % > O1TV Si diode is “on amd Ny = O.TV
Fov tty <= O.TIV Si diode opm and leet rae chee mina ed
by voltage divider role:
| N= \OES.Cwð.) = 0404,
1Osz + \kerw For c(c= —~t\OXw:
Trang 22NeTwerk + "ow" diode Vo lass divider rule:
redrawy: ow 32.22 | Vo ano = ies iver)
ny & 3 2.2e2 “ye -
NegeTive hal Frenete 7) N° = SON
eo en” ied TPolaatto 3 Vo aewoes the 22ksz
Si diode ogen fo positive pvuise J: ane Ay,= Ov
For =2OV < %( <—-0.7V diode “on” amd ja¿=c+O<IV
For ; < -20V, 2 z~2OV +O7V= -19.3V For ay, = -O.1V, No= — 0.1V40.1V =OvV
Yo
Ov
18
Trang 23Cb) For ar; = SV the SV batter y will insore, the diode is for wand-biaved
Fer 4 = 2OV the duode ¡šs vecrse~bìoe4L AxẢ Mạ= ON
For #(Z-—SV, Wi overgowers the Zv baler amd ~the divde is “on”
Peening Kivchhelfis volta sz lew sn he chocle wise
For 17,2 2ZOV the ZOV level ovexeotusex€ the SV supe!y
is “ou Ucame, the shorl— civreviT equ sven for the eliode we find
wee Aes ZOV
For Ax, = -5SV, both Vi and the SV cupely
and separate Vy Com No - However, Wt, ig conmedcdeeh Aired sv
through the, 2.2esz resistor To the SV sugely aud a=
aonmd the diede
reverse —biae the diods
36 For the positive "e2 ơn Se:
the vighT Si Aioke is reverse~ btzo e4
the le Sc Si Mode is Yon’ Aor levels que avedter thaw
S.3V+0.1V= OV Io fac, SO= Or ee
Fer Ax <6V both diodes ore yaar amd =
For the ALG ATI ve region av:
the le fr Si dio ts reverse-biaced
the righT Si diode is “on " der Nevels Ave mM Ow € Usgabive,
than 7.3V +O.1V= 8V tan, 2 ¿=- 8V + 7, <S-V Fer *; >—~SV bom diodes ave reverse—biaced)
đu Woe 02
19
Trang 24VN
Ce: For ~=8V< Je ZOV thewe is MO CoMnOrc cư throug k he 10 ese
resistor due To the lace 4, a complete cirwit theve fove., Ug = Omél For #¿ >GV
Wo = 4t —Q = đc —=@V Fø~+ Ay; = \OV) Ve = 10V-6V= +v
t\OwsS2, For Ac = - BV
38 (a) For meaative nat’ eye capacter chaAses To pease vols
IZOV—OSTV = 119.3V with golait C— ——+›) the ovtevT We is
direcy aucose the “om" diode resvu (Tang Aw 2= —OTV 20 o negeTi ve
geak VaR Ae
Fey ‘the megT positive hail cycle Ay, = ATL + NG SV with a een value ở A2 \ZOV +ì14.3V = 244.3V
(b) For positive half cact+ <acaAc+.Gex c e^aes To peak va tu
“ở IZOV -2ZOV-O-TV = 44.3V œiYh polaAffu C+ —C —) - TA€ ooless
œ 2OW +>O.1V= 290.1V
° ¬ ment magetive half “ca AY, = Jz, ~ 44.3V Loi th wagats ve
eeale value ở A72 = —\2oV—~44.5V = —214.3V
Trang 25Uosmns, the iclecQ dicks operovimed ion the vewTicat shift 4 EXT ca} work
be 120V vecthertham 119.3V and -100V rather tham —919.3V dere ẹ2+~C Co) 2e
the idec® dincdsa appronmation w mick ceAToina ly be Hep erogrivk tar Chis
VL=3V< V„ = 10V and diode wm-emduckin
there Love, L.= Le = <=OV —= SOmA
22O<Z +\90S¿,
ama Vi = av
Ce) IW the absence A the Zener diode
UTOS2 + 220Su
VL= 13 62> Vz = \Ov ond Low diode “on"
Therefore ViL=\OV and Vez,= ISV |
Le,= VR sie = 19M 2052 45 Hn5mA
re, will occur when Te X2 C vM 4c) 2F, The maximum “Re
Ul sa Torm Atom ive +ha magimum permissible level 2 Ve
21
Trang 26Tz ew = Tưng = OOmMN _ SOmA
Any valat We that oceeda 15.86 will resutT Mma AcurvenvT
+z that ws ill epceed the mMatimum vaelur
| Fey ar: = - SOV: |
Z, Peverse biaoeh ap the Zener eoteaTicl and Vz, = —\OV
Ze forward bi ok «Ac“© 1V
ha c te, Voz Vz,+ Vz,= —lO.TV
Fora SV-s Udas WAWE NLither Zener Brodie will reach its
Zener poTeuTicR Iv fact, for etther polarity ‹+‹ ome Zener Mods
will be wan an GPM- Arcuil state resu Tang aw Wy rE
Trang 27+%œ = kL +I, =1001, +I, = tot
Ie= Te _ Đm _ 74 ca ” tỒI “ c1
Tc = \OoTg = \OO C74.21L8)= '7/421mÔ
Te =SmA, Vog='V: Vee = 800mvV
Veg~= \OV: Vag = T7IOmV
Vce = 2OV: Vee = 7SOmW
it
the chaneg m Veg so 20V: iv = 20:1
the rewitrig hhanae A~ Veg 2 ØX>mYV : 1SOmV = LOT L (very slic hT )
13 Cay Ke = Tg =4.5mA
(by I, 2Te =45mA
Ce, megligible: change cannot we cdeTecle® ơn this sed A paradiovisTics
Trang 28Ca) Cae cdloes cham‹* Lown et To ev om the chanacTeris vices
Low Ie, high Vee —> lig hee beTas
High Tp, low Vee —> lower betas
a5 Gace = TE = 24mA _ iG
Commm- emiler Maouv hhoaKeristies ma4, be cô
directly Lev cCommm-collecAor eeQerleaTioms
S Te=Temay » Vee = Femar = 30mW 2 sy
Te mon GmA
Ve= Veg „2 Le= Pe may = 32omw _ 2=
Vez isvV ents
Te ~ 100mA
Vee =20V, Te = TP mac „ 6259-3255
2ov Vee
24
Trang 2935 hee (Ode) with Veg = LV, T= 25°C
+c= O.1mA, hee = 0.43Ci00)= aie
Tc= LO mÔ, Nee = O.38(ioo)= 48
hee fac) ws with Vee =10Ov, T= 25°
I¢= Loma, ho, = 160
For both hge and ho, the came movcan par collector c{vxvew€ vesu (Te«Ð, Lin a aimilan mMmaeweasce (relatively “e2 449) x6 te 245046616
the lewelo ar hig her dv hte but wote thar V.- is highev aro
3T (4©) 2A“ Xc zImÔ, he, = '!20 |
Qe Te=lomf, he = 160
Ce) “The vecu(Fs am-firm he emclusios ervebiems ZR anL2+t her
BeTa Tends To mroreaanr with inereaoamg ce \lechor~ curreaL
34 (a) Q, = ~ lomA-12.2mA _ 3.5mA = 140
ATs \ Wee <3v sưa na zoxÐ
Pac Ign 54/54A =£
Ce) = *mA- 2m8 = ZmA = 200
(Fac ta ~ BA to»8 ——”
€2 Cy.2 te= 3mA = 230.17 TA 1SKA
Ce) In both caqeo (Jae is slightly
C£) (a)
lw ajenew ah Cac + Gas Mat eaae with SAA Wena Le ** 4:x 9 Vee
and bo đdtcrc2e“- cđ*a cv đ@⁄2 levels Vee Lor o Fi XeQ Le
Howwer, ch Ie ppmwvesacs while Vee đa €2
when wer
Tevet AG Two wets xa «be Un Gaehuwisiics chamag oon Ha
level Cae or Bac 22A Mat ch G61 aognrd toc TY la co coxv 94,
the ISK ethan pan Cr C008 avr Co OAA be jpAn Cd Tew (AvvcAA
an He sec tên 2 Âoprce-.e sr Vee “the obove doko anweeleo
her who ~¬ & cv pestil: [iT eta ca tte Revate «A P ons
higher tham Pac C8 to%)
25
Trang 30Chapter 3CEven)
z A bieolar Cramucter ulilizes holes and elecTrooms wa the AẬ£cUì or Manage Siow process, while umipolar devices uli lize
either elecirms or holes, but TT both, saan Khe Ananse -hou› process
++ The leakage current Leo is the miver: to Carrie Curremld ma
44 (a) Uaamg Fig 3.7 fwsT, Te # TmÔ
Then F:ạ3.® resuviTs man Tc*# 7mÑ
Co) Uax2a Fiạ5.84sĩ, Tự Š SmA
then Fig 397 resuiTs wm Vee = O-18V _
Ce) t©42^3 Fig 3,\OCb) Te = SmA resolTs ivy Va = 0-81V
(3) loa Fia 3.10 C<) Te = SmA cesutls m Vee =Ọ1V
Ce) Ure, the ol {flow enn ce mr levels “vec cav- be tamexek
most ogplications if volTa ses 4 ereR volTs art pres
20AI Fig B14 Cb): Te = 354A
Fig 3.1% Ca) IT S3.6mA
by Fig 3.14 (2) > Vee 5 2.5V
Fis 3.14 Cb): Vee = O12V
22 Cay Fig- 3.14Ca): IL-6 = 0.3mA
=CI—9.4426)C9.3m8)
= 2h
26
Trang 31(Aa) Fae doec cha from coiC Te gost om the cÑaA acÏQev-tsNtc.$ The hig hetT vckue war ob tamell ch a highew lewe 2 q Vee And lower level Ate the Sepev o Tio beTivecee Ip corves is the greates
As x, deureased the levue® Cae and Œa‹ pncrea sede
Dole thas the ler eZ Cae and Dae ran the conley +ta active résimm is close THe TC Axe%v ve9,©_ of Le lew ele xu sư» ng
lw each case Mac '5 lar “thon ae with the leacl Ai fevence
oeeursse MA Corr Lew the active resww
Trang 3236 As; the revevse.-biac PoVenTia® ÀLÀLCVGAO.o2 A44 ‘Toke the
AA~@ capacitance Cito deo 64909 C Fig 3.230))- lworesow
revurse —biao Qotentiale Cawes he wihh the SG Hàm
reeion Toh movearze hy reduces tác ALT aucr
CO € Aye
38 AT T= 10mA, hee = 0-48 (mormalized) @ 25°C
hee Sets © “ứ )@ \25"C Nice = O.S\ € “ )›@2-S5Sc_
Assumi 3100 e&F 25° will resol im w€la
ar S\ _~ss°c—-a@ @%
soort™ 145 at 125°C
ằ- Seat ARAM gh ~ AS wa mutT be
Cm sidered pir ~ehe 2ưste^ g@h-2z^~—
28
Trang 332 eee = Vee — Teg Re = WOV—C2.43mANZ TKR) = 8.04V
C Ve = Ve€,, = &.04V
C) Ve - Vag = O.7N
Csac J vs
chì TP =Veeg tes = (10.15V)(3.44mA) = 36.55 mW
(é) Pe = Vee (ie +Ts) = 2IV(3-4mA+ZSHA) = WAZ)
MD Vee =Ve-Ve = 76ev~2.4V = S.2V
(e) Vg = Vee +VeE= ©rTV+2.HV= 3.\N
% Le set = Nec = Zov_ = 20ov_ = SismA
Boeke Z2 WstkSEs> 444v
29
Trang 34©¿89 UhaGi MA :
(A) Problem 6 Tc2 =3-22m@, Voc„= 8.e\V Cửa, = 240,8)
Œ) Tạ = Vcc~ YAc We&€ 20v-0.1V
Per cđxÒ)ve SioKse + (15041901 529
Te = 0 Teg = iSO) 26.21HAI= 3.43mA
Veeg = Vee Ve CKe +e )
= Foy —(3-4BmAY(Z HeSe +1552) = AETV
(b) Ve siteRe = Fe = C1.28mACZese) = 1 SAV
Co) Vg = Vge +Ve = O:1V+LSA4V = 2.244V
(a) “R= Vey 7 Ve,= Vee -Ve = \(BV—2.214V= 15.16N
Tey te Etats YS Z2WV Loy ' : Cae, Stee 7 Sor mA
“= ‘Fi = \S:76V = 34.4 ft
+%, o.+mAa
iS Teves Nee = lev _ - 16V =%.44mÔ
B+Ce Z.4wœ ~O.©&kSe 'ì5oÈS© —T
IT CO) Ry = RNR, = 234 ((8.2€sv = G:16ksv
Ex, = WeNee S2ee OSV) = 3.13V
Cyr Kez 24E + 9.¿k%¿
Tg= Em-VWe€ = >- nn „ 3.\2V—G-TV 22M” `
#m+(@+Yf£ G18ef++C(z0)Ce )
= zw3V = \4.o2 (27 TÔkESe
Trang 35| 103 Bese Z SO.4eSt Che cleo)
AVT(2) Problem io: Agere imate yvoa A: = 2.43mA , Vee a= 1.5SV
Proble^ VÌ: ExAeYAxeaÐasi$: Tc a<2/26m,Voc= 8.2V
ca<«f#L Co chem mstrate tha
The ade sot M will be emp
oHeer qe homes 4 24 sả vưx(móÀ 2ovoe^
wo ne 4ezuiT aw 2% =o*% oR HEV = OH,
(b) Problew 17: Ema 3.\3V,Ena< 618052
Fer sitoal ime where 2 Re P10Rs the cha stn he, ond /ev Vee
durr To arsmPicawy Lrauge z.(® will be veto sword,
CA) %ATc=2.\3% vs ++4.83°%& se cyxekkz~ 1
% ANes = 2.68% VS “4G.70% fov grobleus \\
-đ^v cher tam §; yal, oH cum sihew oly less FAST tU€,
Trang 36Te = (3 Tg = (100)(20.0H%.A) =2.01mA
Co) Ves Vee -X%&
= 20V — C2.0ImAXKS.2KL) = BOV— 12.462V = VISAV
CO) Ve eTele SRle = (2.01mA Sk) = 5 02V
(4) Vege = Vee — 1ÄC€c+fte) #3ov C2 01m AC O.Z2ER +1.SK2)
= 4.52v
as iW s2=— OS2., Re = Sokse
Ig= Vec- Vee = \2V~@©.1V
Fuu \WMs7: Ea = loookse +150k2 = LISORS2 =\\SMs
Tg = Vec - Vee _ \2V-O-1V
Rex GiWere) 1ismsz+ SOMA TMESZ+3.3 ve)
A4 (2e >\OE„ set sR fie” War ExareAggroade:
Wctweork redraws To ae Cax mine the ~TỈAcU ca *+»2 “w4vleÐL :
Trang 372OV =IOmÔ => ZOV © mA a> She= AY =2$2
Ss eee
“Ke = 4s = \.cs2 Tp=te = SmA _ 1.67 4A
Vito = Vec- Ve = ZBV —\9S.6NV =&® 4V
Ec= W& ~ 8.4V = t1eÐveg Cuac 6®)
Trang 38Solvivo fe, = S2.152 sz (uar Siks2) STauonreR 632, |
“Wes 43ke
| ®%c + O.c2t©
34 (2) Ooa ~cXreœ CC pwn he ben cireit”
Bonk crmmecTime A emiller Ten mivocQ,
Dawmnaced Trauaoler-
(5) ShovTeR base, -emiller uu cli vn—
Oem ot coilechor Tew mine cR_
Ce) Open cancurT sn bone circeoiT
Opm TCrannivleorcm
_#I C2) Rat Teh Tet, Vt
co) (3+, Te‡
Cc) umelnoma2ah, De gee MOT a fam tim dl (?
Cel) Vee+ ) Tet, Ley -
Ce) 24, Te, Vecr, Veet, Veet
1O5kS2 SF 16Okst Ceohecho)
Uce “te ox in ahe 2z@roa+_'
Ve, > \GVS+ (=22V) = —3.SV
lose + B2ksz
Ve = Var 0.7V=-3.549V tO.7TV = ~2.e4v
T=le = VE/Ce =2 .isve= ^- 8S
Tạ =+Lc = 3.8S5mA =11.S Set = TSA
34
Trang 39=@0(4.a@) +(42 <+OZ£S)CO.2V) +C32.Soxvø °")C22.S5)
= 842x\o +0.384 xioo" tA + 7.326% 3Ơ
“km +3 “IRE 7.494 RS2 +(81)C0.68k2)
— = =—Ì.€ ~s
7.44 esz + SS,08RS2 Le
©) sự)= Feit Rryfeed 2 i TimAC + FA4ER/0.68 RR)
Œ,C (+ Cz +R fre ) BOL 14100 +7194RIZ/0.68 RZ )
a=?
owe 1 71m@A (12.6 8) = 2.41% 107"A
Bo v42 68) ~—————
(a) AT = SCT/2)ATc„ +SCVse)Vse * s(@) 8£ |
= C\\.OĐ)C \Ộ ~o.2~@) +C—1.21xvG73S)CO.5V~ OTV)
ï yee Steo) SCVee) S@)
Colleclor Feedbade 83.629 ~\.426x\G *S -{ gd xvo"® Â
E miller- bias T8.\ —1.S1 % vo1s AL xio~FA
VolTace = divider W.0% A2.7xX10O™4S 2.dtxìioO” sÀ
Eired—bias Q\ —\.42zx:o-*4S 32.S@x\o” PR
35
Trang 40SCL.) * Consider cloly less fer the vo Tass divider amfi Seratin com pared Uo the otha hree
SVee): The volTace - divider con fioguraTiom is move Sensitive thaw the othov three (which hane similar levels SomeiTiv ita) |
s(B) : the vo ~ Ø\?v t e4 am ia vraGio is the leasT seuss Tive with the £ teed bias emfisur ot m vew 4 Ssemsitive
\ wc, he volt ~ davider eavtis oraTiom is the le
SeusiTive with the fin ~biaew he mote PeusiTive
36