1. Trang chủ
  2. » Trung học cơ sở - phổ thông

can bac hai

3 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 13,91 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hiểu khái niệm căn bậc hai của một số không âm, ký hiệu căn bậc hai, phân biệt được căn bậc hai dương và căn bậc hai âm của cùng một số dương, định nghĩa căn bậc hai số học.. Hs biết đượ[r]

Trang 1

Lớp: 9A Tiết TKB: Ngày dạy…/…/… Sĩ số:… Vắng:….

CH Ư ƠNG I - CĂN BẬC HAI CĂN BẬC BA

Tiết 1: CĂN BẬC HAI

1 Mục tiêu của bài giảng:

Về kiến thức:

Hiểu khái niệm căn bậc hai của một số không âm, ký hiệu căn bậc hai, phân biệt được căn bậc hai dương và căn bậc hai âm của cùng một số dương, định nghĩa căn bậc hai số học

Hs biết được liên hệ của phép khai phương với quan hệ thứ tự và dùng liên

hệ này để so sánh các số

Về kỹ năng:

Tính được căn bậc hai của một số hoặc một biểu thức là bình phương của một số hoặc bình phương của một biểu thức khác

Về tư duy thái độ:

Rèn luyện tính chính xác, làm việc khoa học, có tinh thần hợp tác trong hoạt động nhóm

2 Chuẩn bị của giáo viên và học sinh:

* GV: Bảng phụ

* HS:_Bảng nhóm

3 Nội dung bài giảng:

Hoạt động 1: Căn bậc hai số học (15 phút)

Hoạt động của giáo viên Hoạt động của học

sinh

Nội dung ghi bảng

- Ta có 9 là bình phương

của 3, vậy ngược lại 3 là gì

của 9; ( 5 là gì của 25) 3

là CBH của 9.

- Có mấy số bình phương

lên bằng 25? (5 và – 5)

Vậy một số dương có mấy

CBH?

- Có số nào mà bình

phương lên bằng – 4? Vậy

số âm có CBH?

- Cho hs thực hiện ? 1

- Hs nhắc lại kiến thức củ ở lớp 7

- Ghi bài vào vở

- Hs thực hiện ? 1 (nhóm).

3 và -3 vì 32 = 9, (-3)2

1 Căn bậc hai số học:

+ Căn bậc hai của một số a không âm là số x sao cho x2 = a

+ Số dương a có hai CBH đối nhau là: - √a ;a

+ Số 0 có đúng một CBH, ta viết : √0=0

VD:

- CBH của 9 là 3 và -3 vì 32 =

Trang 2

- CBH của 9 là 

- CBH của 49 là 

- CBH của 0,25 là 

= 9

2

3;−

2

3 ( tương tự) 0,5 và - 0,5

9, (-3)2 = 9

- CBH của 49 là 32;−2

3

( tương tự)

Hoạt động 2: Định Nghĩa - Vận dụng (15 phút)

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng

- CBH của 2 là 

*: Mỗi số dương a có hai

CBH đối nhau( √a

- √a ) ở đây ta chỉ xét

CBH dương hay còn gọi là

CBHSH Vậy CBHSH là

gì?

Chú ý : Với a ≥ 0 , ta có:

+ Nếu x = √a

thì x ≥ 0 và x2 = a

+ Nếu x ≥ 0 và x2 = a

thì x = √a

Vậy ta viết: 

- Phép tóan tìm CBHSH

của một số không âm gọi

là phép khai phương

- Khi biết được CBHSH

của một số ta dễ dàng xác

định được các CBH của

nó 

- Hs đọc ĐN trong SGK

- Vài hs nhắc lại định nghĩa

- Hs lắng nghe phần chú ý:

- Hs thực hiện ? 2 (hs thực hiện nhóm– sử dụng máy tính bỏ túi)

- Hs thực hiện ? 3 CBH của 64 là 8 và – 8

CBH của 81 là 9 và – 9 CBH của 1,21 là 1,1 và – 1,1

Định nghĩa : (SGK/4)

- Với số dương a, số

a gọi là CBHSH của a.

- Số 0 cũng được gọi

là CBHSH của 0.

Vd 1:.CBHSH của 16 là

√16

(= 4)

* Chú ý :

x=a ⇔

x ≥ 0

x2

=a

¿ {

Hoạt động 3: So sánh các căn bậc hai số học ( 10 phút)

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng

Trang 3

- Khi có hai số bất kỳ thì ta

sẽ có so sánh hai số, vậy

với các CBHSH ta sẽ so

sánh như thế nào?

- Điều ngược lại có đúng

không? 

- Ví dụ : So sánh 2 và

√5

- So sánh :

Ta có : 4 < 9  √4 ?

√9 Với :+ 0 <a <b √a ?

b

+ √a < √b  a <

b ?

- Hs thực hiện ? 4

Hs dựa vào định lý để trả lời câu hỏi

- Hs thực hiện ? 5 tương

tư như Vd 2

2- So sánh các căn bậc hai số học:

* Định lý : Với hai số

a và b không âm , ta có :

a < b  √a <

b

* Vd 2 : So sánh 2 và

√5

- Ta có 2 = √4

Vì 4 < 5 nên √4 <

√5 Vậy 2 < √5

* Vd 3: Tìm số x không

âm biết : √x > 2

Giải : Vì 2 = √4 , x >

0 ; nên √x > 2 

x > √4

 x > 4

Hoạt động 4: Bài tập - Hướng dẫn về nhà (5 phút)

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng

Bài 1 /SGK/6 : Hs trả lời

miệng tại lớp

Bài 2 /SGK/6: Câu a, b Bài 4/ SGK/7: Câu a, b

Ngày đăng: 31/05/2021, 01:45

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w