Tìm tọa độ giao điểm của đồ thị các hàm số.[r]
Trang 1Trường THPT Nguyễn Trung Trực - Tổ : Tốn –Tin Đề cương ơn tập Học kỳ I : TỐN 10
SỞ GIÁO DỤC – ĐÀO TẠO BẠC LIÊU TRƯỜNG THPT NGUYỄN TRUNG TRỰC
ĐE ÀCƯƠNG ÔN TẬP
Tổ: toán tin
TỐN 10
Năm học :2009-2010
Trang 2Chương I :MỆNH ĐỀ - TẬP HỢP
Bài 1 Xét tính đúng sai của các mệnh đề sau:
a) x = a2 x a
b) a2 chia hết cho 4 khi và chỉ khi a chia hết cho 2
c) 19 là số nguyên tố
d) 1025 là số chia hết cho 5
e) Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có 2 đường chéo bằng nhau
f) Mọi tam giác đều có ba góc bằng nhau
Bài 2 Lập mệnh đề phủ định của các mệnh đề sau:
a) x R, x2 - x +1 > 0
b) x R , x+3 = 5
c) n Z , n2-n chia hết cho 2
d) qQ ,16q2 – 1 = 0
Bài 3.Xác định các tập hợp sau bằng cách liệt kê các phần tử
a) A = {x Q/ x(x2 + 2x -3)= 0}
b) B = {x / x = k
3
1
với kN và x
729
1
c) C ={ xN / x là ước của 45}
d) D ={ xN / x là số nguyên tố chẵn}
Bài 4: Cho A = {a,b,d,e,h }
B = {b,c,d,f,g,h ,k}
C = {c,m, n}
Hãy xác định các tập hợp sau : a) AB , AB ,B\ C
b)( AC)B
c) (A\B)C
d) B\(AC)
e) Tìm các tập hợp con của tập C
Bài 5.Cho các tập hợp sau :
D ={ xN/ x ≤ 5}
E = { xR/ 2x( 3x2 – 2x -1) = 0}
F = {xZ / -2 ≤ x < 2}
a) Hãy liệt kê các phần tử của các tập hợp
b)Tập F có bao nhiêu tập con Hãy liệt kê các tập hợp con của F
c) Hãy xác định các tập hợp sau : 1)D F ,D E ,E\F
2)(EF)D
3) (F\D)E
4) D \(EF) , (D E) (D\F)
Chương II: HÀM SỐ
I.HÀM SỐ
1 Tìm tập xác định cuả các hàm số sau :
x x
y f x
x y d x
x
y
c
x x
x y
c x
x y b x
x
y
a
4 2 )
3 2 )
1
3 )
) 3 ( 1
5 )
2
4 )
9
7 2
g) y = 2 2
4 3
x
h) y = 4 3
2 1
x x
i) y =
( 1)( 2)
x
x x
Trang 3Trường THPT Nguyễn Trung Trực - Tổ : Toán –Tin Đề cương ôn tập Học kỳ I : TOÁN 10
2 Xét tính chẵn, lẻ của các hàm số sau:
a)y = 4x3 + 3x b)y = x4 3x2 1 c) y =
3 x
1
2 d) y = | 2x – 1 | + | 2x + 1|
e)y x 5 g) y = | x | + 2x2 + 2 f) y = x3 - 3x+| x | h) y = |2x 1|x2|2x 1|
3.Viết phương trình đường thẳng trong các trường hợp sau:
a) Đi qua 2 điểm A(-1;3) và B(2; 7)
b) Đi qua A(-2;4) và song song song với đường thẳng y = 3x – 4
c) Đi qua B(3;-5) và vuông góc với đường thẳng x + 3y -1 = 0
d) Đi qua giao điểm của 2 đường thẳng y = 2x + 1 và y = - x + 6 và có hệ số góc đường thẳng bằng 10
4 Lập bảng biến thiên và vẽ đồ thị hàm số
a/ y = - x2 + 2x – 2 b/ y =1 x 2 c/ y = x2 + 1 d/ y = 2x2 + 3
e/ y = x(1 x) f/ y = x2 + 2x g/ y = x2 4x + 1 h/ y = x2 + 2x 3
i/ y = (x + 1)(3 x) j/ y = 12 x2 + 4x 1
5 Tìm tọa độ giao điểm của đồ thị các hàm số Vẽ (P) và đường thẳng () trên cùng hệ trục
a/ y = x2 + 4x + 4 và y = 0 b/ y = x2 + 2x + 3 và () : y = 2x + 2
c/ y = x2 + 4x 4 và x = 0 d/ y = x2 + 4x 1 và () : y = x 3
e/ y = x2 + 3x + 1 và y = x2 6x + 1 f/ y = x2 + 4x và () y = -2x -5
g/ y = x2 + 3 và() y = -3x -1
6* Cho hàm số y = ax2 + bx + c (P) Hãy xác định các hệ số a, b, c trong các trường hợp sau :
a Đồ thị (P) đi qua 3 điểm : A( –1 ; 8), B(1 ; 0), C(4 ; 3)
b (P) có đỉnh S(–2 ; –2) và qua điểm M(–4 ; 6)
c (P) đi qua A(4 ; –6), cắt trục Ox tại 2 điểm có hoành độ là 1 và 3
7 Tìm parabol y = ax2 + bx + 1, biết parabol đó:
a) Đi qua 2 điểm M(1 ; 5) và N(-2 ; -1)
b) Đi qua A(1 ; -3) và có trục đối xứng x = 5
2 c) Có đỉnh I(2 ; -3)
d) Đi qua B(-1 ; 6), đỉnh có tung độ là -3
II.PHƯƠNG TRÌNH
1 Tìm điều kiện của phương trình sau
x
x
4
2
x
x
1 2
4
c) 2x 1 1x d) 1 23
x
x
4
3
2
x
x
2.Giải phương trình
a) x 1 x 3 x 1 b) x 4 + x + 1 = x 4 c) x 3 x x 3 3
x
x x
x
f) 3 2
2 3
2
3 2
x x
x x
1
Trang 4g) 2 3 41 2 13
x
x x
= xx32 i) xx13 = 32 x k) x 1(x2 x 6) = 0
Bài 3 : Giải các phương trình:
1) x + 2 = x 3 2) 3x - 4 = 2x + 3 3) 2x - 1 - 2 = 5x 4) 2x 3 = x + 2 5) 3x + 4 + x = 2 6) | x2 + 4x – 5| = x – 5 7) 3x 1 = 2x + 3 8) x 3 = | x + 1| 9) 2x + 1 - x 2 = 0 10) x2 2x - 2x2 x 2 = 0 11) 3 4
3
x
x 12)
0 7 3
5
3 2
x
x
13 ) 2 1 1
6
x
x x
2 1 2
x
x x
15) |x+2| =3 16) |3x-1| -x =5
4.Giải phương trình
1) 5 x 6 = 6 2) 3 x 2 = 2x 1 3) x 2 4 x 4) 4 2 2 1
x
x - 1 = 3x 5) 3 2x x 2 6) 3 2 9 7
x
x + x - 2 = 0 7) 2 x 7 - x + 4 = 0 8) 2 4 1
x
x - 2x - 4 = 0 9) x2 x 2 = 2(x 1) 10) x2 9 x 1 = x 1 11) 3x 7 x 1 2 12) 3x2 9x |x 2 |
Bài 5 : Biện luận các phương trình sau:
1) (m – 2)x = 2m + 3 2) 2mx + 3 = m x 3) m(x – 3) = -4x + 2 4) (m 1)(x + 2) + 1 = m2
. 5) (m2 1)x = m3 + 1 6) m(2x-1) +2 = m2 -4x 7) m(x+1) = 2 + m2(x-1) 8) 4m(x+m) = 5( 1-x) –m Bài 6) Tìm m để phương trình có nghiệm tùy ý ,có nghiệm , vô nghiệm
a) 2x+m -4(x-1) =x-2m+3 b) m2 –x +2 = m(x-3) c) m+1+x= 2m(m-x) d) m2(x-1) = -(4m+3) x -1 e) (2m+3)x – m +1 = (m+2) (x+4) f) m(5-2m)x+2m+3(x+1)
Bài 7: Tìm m để phương trình có 2 nghiệm trái dấu
a/ x2 + 5x + 3m 1 = 0 b/ x2 2(m 2)x + m 3 = 0
c/ 2x2 + 2(m + 4)x - 3m – 4 = 0 d/ -x2 2(m 1)x + m 2 = 0
Bài 8)cho phương trình tìm m để
a/ x2 2mx + m2 2m + 1 = 0 có nghiệm x = -2 tính nghiệm kia
c/ (m + 1)x2 2(m 1)x + m 2 = 0 có nghiệm x = -1 tính nghiệm kia
d/ (m 2)x2 2mx + m + 1 = 0 có nghiệm x = 3 tính nghiệm kia
Bài 9Tìm m để pt có nghiệm ; 2 nghiệm phân biệt ; vô nghiệm ; có nghiệm kép Tính nghiệm kép
a/ x2 (2m + 3)x + m2 = 0 b/ (m 1)x2 2mx + m 2 = 0
c/ (2 m)x2 2(m + 1)x + 4 m = 0 d/ mx2 2(m 1)x + m + 1 = 0
Bài 10 cho pt: x 2 + (m - 1)x + m + 6 = 0 có 2 nghiệm thỏa điều kiện: x 1 + x 2 = 10
Bài 11 cho pt ) x 2 (m + 3)x + 2(m + 2) = 0 có 2 nghiệm thỏa điều kiện: x 1 =2x 2
III/ Giải hệ phương trình sau:
1)
2 2
1
y
x
y
x
2)
3
1
3
y x
y
x
3)
1 3 4
18 4
3
y x
y
x
4)
1 2
1 3
5
y x
y
x
5)
3 3
5 2
2 2
z y x
z y
z
2 1
Trang 5Trường THPT Nguyễn Trung Trực - Tổ : Toán –Tin Đề cương ôn tập Học kỳ I : TOÁN 10
6)
6 3
6 2
2
8 2
3
z
y
x
z y
x
z y
x
7)
5 4
3
1
y x
y x
8) 2 1
9)
7
1
IV.BẤT ĐẲNG THỨC
1)Chứng minh các BĐT sau đây:
a) 2 1
4
a a b) 2 2
0
a ab b c) (a b )22(a2b2) d) 2 2
0
a ab b e) 2 2 2
a b c ab bc ca
2)Chứng minh các BĐT sau đây với a, b, c > 0 và khi nào đẳng thức xảy ra:
a) (a b )(1ab) 4 ab b) (a b)(1 1) 4
a b
c) (ac b) 2 ab
c
d) (a b b c c a )( )( ) 8 abc e) (1 a)(1 b)(1 c) 8
g) (a22)(b22)(c22) 16 2. abc
3 a) GTLN của hàm số: y(x 3)(7 x) với 3 x 7
3
y x
x
với x > 3
4Tìm x biết c) x 8 2) x 3 c 2x - 1 x + 2
Hình học
1)cho hình bình hành ABCD có hai đường chéo cắt nhau tại O Hãy thực hiện các phép toán sau :
a) AO BO CO DO b ) AB AD AC C ) OC OD
2) Cho tứ giác ABCD Gọi M,N ,P lần lược là trung điểm của các cạnh AB, BC , DA Chứng minh rằng :
3)Cho tam giác ABC có trọng tâm G Gọi M,N ,P lần lược là trung điểm của các cạnh AB, BC, CA
Chứng minh rằng:GM GN GP O
4) Cho A(2;-3) B(5;1) C(8;5)
a) xét xem ba điểm sau có thẳng hàng không ?
b) tìm tọa độ điểm D sao cho tam giác ABD nhận gốc O làm trọng tâm
c)tìm tọa độ trung điểm của đoạn thẳng AC
5/ Cho ABC : A(1;1), B(-3;1), C(0;3) tìm tọa
a/ Trung điểm của AB
b/ Trong tâm của ABC
c/ A’ là điểm đối xứng của A qua C
d/ điểm D để tứ giác ABCD là hình bình hành
e/ điểm M sao cho 3 MA MB MC O
6) cho hình bình hành ABCD
a) tính độ dài của u = AB DC BD CA
b) Gọi G là trọng tâm tam giác ABC CMR : GA GC GD BD
7) Cho tam giác ABC đều có cạnh bằng a I là rung điểm của AC
a) Xác định điểm D sao cho AB ID IC
3
Trang 6b) tính độ dài của u = BA BC
8) Trong mp tọa độ oxy cho điểm G(-3;2) tìm điểm A thuộc Ox , điểm B thuộc Oy sao G là trọng tâm tam giác OAB
4