[r]
Trang 1Bài 1 : Giải các phương trình sau :
1/ 3x2 +6 x +8
3/2x2
=(12)x− 1
5/ 22 x −3=41 − x 6/ ( √5)4 x −12=(251 )3 − x
7/ 27x+2
=3x2+5 9/5x x
2
+3 x+5
=(x2+2)x+3
11/ ( x− 2) x2
+1
13/2.9x
−4 x+1 − 3 x+2=0 15/9x
17/32 x+5
5x
21/4 22 x
+6x=22 x+1 23/64.9x − 84 12 x
+2 81x=5 36x
25/3.4x+1 −5 6 x +1
+2 9x+1=0 26/6.91x −13 6
1
x+6 4
1
x=0 27/5.4x
29/( √33 −√8)x+( √33+√8)x=6 30/√¿ ¿
31/(4+√15)x+(4 −√15)x=8 32/(7+4√3)x −3(2 −√3)x+2=0
=10x 2− x.5x+1 35/7.3x+ 1
−5 x+2=3x+ 4 −5 x+3 36/ 73 x
+9 52 x=25x+9 73 x 37/ 52 x=32 x+2(5x
+3x
+52 x+1=2x
+3x +1
+5x+2
39/ 3x + x -4 = 0 40/ (13)x=x+4
41/ x2 –(3-2x)x + 2(1-2x) = 0 42/ 9-x –(x+2)3-x - 2(x+4) = 0
43/25x –2(3-x)5x + 2x-7 = 0 44/ 4x +9x + 16x = 81x
Bài 2 : Giải các phương trình sau :
2
3/ log5(2 x +1)+log5(2− x)=0 4/log2(x +5)− log2(x +2)=1 5/
2 (2 x+ 1)=log26 6/ lg5+lg(x+10)-1= lg(21x-20)-lg(2x-1) 7/ log8x + log64x = 12 8/log5x=log5(x+6)− log5(x+2) 9/log5x+log25x=log0,2√3
10/ logx(2 x2−5 x+4)=2
11/ log2(x +3)=1+log2(x −1) 12/log3(log1
2
x )=0
13/log1
2
¿ 14/ log2(9− 2 x)=3 − x 15/log3(x −5)−log32−1
2log3(3 x − 20) 16/log5(x +20) log x√5=1
17/logx+1(2 x3+2 x2− 3 x +1)=3 18/log4(log2x)+log2(log4x)=2
19/ log4(x +3)− log2(x − 1)=2− log48 20/log3x+log√3x +log1
3
x=6
21/ lg2x − 3 lg x=lg(x2
Trang 223/2¿ 24/log1
3
3
x+2=0
25/log2(x −5)+log1
2 (2 x+ 1)=log26 26/ log2x − log x 8=−2
27/logx 2 − log4x+7
6=0 28/2x – lg(52x +x -2) = lg 4x 29/4 − lg x1 + 2
2+ lg x=1 30/log3[1+log3(2x − 7)]=1
31/(x+2)log32
x
8 =−1
33/ xlg 4
35/xlog 33 x
.5log3x
=400 37/4lg 10 x
−6 lg x=2 3lg(100 x2)