[r]
Trang 1Bài 1 : Gi¶i c¸c phương trình bËc nhÊt sau
a) 2x +1 = 15-5x b/ 3x – 2 = 2x + 5 c) 7(x - 2) = 5(3x + 1)
d/ 2x + 5 = 20 – 3x e/- 4x + 8 = 0 f/ x – 3 = 18 - 5x
g/ x(2x – 1) = 0 h/ 3x – 1 = x + 3 i/ 5 x −42 =16 x+1
7
j/ 2(x +1) = 5x - 7 k) 2x + 6 = 0 l) 2 x +1
6 −
x − 2
4 =
3 −2 x
3 − x
m) 2x - 3 = 0 n) 4x + 20 = 0 o/ 1 + 2 x − 56 = 3 − x4 p) 15 - 7x = 9 - 3x q)
2 1 3
x
+ x =
4 2
x
r)
x x
r)
(x - 2) (x + 1) (x - 4)(x - 6)
3(2x +1) 3x + 2 2(3x -1)
- 5 - =
u)
3(2x +1) 5x + 3 x + 1 7
x+1
2009+
x+3
2007=
x+5
2005+
x +7
2003
x)
392 - x 390 - x 388 - x 386 - x 384 - x
x -15 x - 23 + - 2 = 0
Bài 2 : Gi¶i c¸c phương trình sau (®a c¸c PT vÒ d¹ng pt bËc nhÊt hoÆc PT tÝch)
a) y(y2-1) - y2 - 5y + 6 = 0 b) y( y - 1
2 )( 2y + 5 ) = 0
c) 4y2 +1= 4y d) y2 – 2y = 80
g) (2y – 1)2 – (y + 3)2 = 0 h) 2y2 11y = 0
i) (2y - 3)(y +1)+ y(y - 2) = 3(y +2)2 j) (y ❑2 - 2y + 1) – 9 = 0
k) y2 + 5y + 6 = 0 l) y2 + 7y + 2 = 0
m) y2 – y – 12 = 0 n) x2 + 2x + 7 = 0
o) y3 – y2 – 21y + 45 = 0 p) 2y3 – 5y2 + 8y – 3 = 0
q) (y+3)2 + (y + 5 )2 = 0
Bài 3: Gi¶i c¸c phương trình cã chøa Èn ë mÉu sau:
a) x −3 x −2+x +2
2
3 x – 6 ) = 0 c /
x −3
x −2+
x +2
x =2
d) x +1 x − 2 x − 3 x − 1 =2 x +3
x −1
x −2 x+1=2 g)
1
2 1
h) x +3
x +1+
x −2
2
x +1 −
3
x −1=5 j)
2
2x + 1 2x -1 8
2x - 1 2x +1 4x - 1 k)
3 x −1
x −1 −
2 x+5
x −3 =1 l)
2
x +1 −
1
x −2=
3 x −11
(x +1)(x −2)
3x -1 2x + 5 4
x -1 x + 3 x + 2x - 3 n)
x+2
x −2 −
1
x=
2
x(x −2)
o)
x −2
x+2+¿
3
x −2=
x2−11
2 2
x 1 x 1 x 1
p) 2 x
x −1+
4
x2+2 x −3=
2 x −5
x +3 q)
x2− x x+3 −
x2
x − 3=
7 x2− 3 x
9− x2
r)
+ 2 = + x
x - 3 x -1 s) 2
=
+ 4 =
x + 2x + 3 x +1