I/- Mục tiêu : Củng cố cho học sinh kĩ năng dùng các quy tắc khai phương và nhân các căn thức bậc hai trong tính toán và biến đổi biểu thức Về mặt rèn luyện tư duy, tập cho hs cách
Trang 1
t17 G v : Võ Thị Thiên Hương Ngày soạn :
Tiết : 5 Ngày dạy :
I/- Mục tiêu : Củng cố cho học sinh kĩ năng dùng các quy tắc khai phương và nhân các căn thức bậc hai trong tính toán và biến đổi biểu thức Về mặt rèn luyện tư duy, tập cho hs cách tính nhẩm, tính nhanh, vận dụng làm các bài tập chứng minh, rút gọn, tìm x và so sánh hai biểu thức
II/- Chuẩn bị :
* Giáo viên : Bảng phụ ghi bài tập * Học sinh : Bảng nhóm III/- Tiến trình : * Phương pháp: Vấn đáp kết hợp với thực hành theo cá nhân hoặc hoạt động theo nhóm
HOẠT ĐỘNG CỦA THẦY HOẠT ĐỘNG CỦA TRÒ NỘI DUNG BỔ SUNG HĐ 1 : Kiểm tra (8 phút) - Gv nêu yêu cầu kiểm tra 1 Phát biểu định lí liên hệ giữa phép nhân và phép khai phương - Sửa bài tập 20d trang 15 SGK Rút gọn : (3 a )2 0, 2 180 a2 2.Phát biểu quy tắc khai phương một tích và nhân các căn bậc hai - Sửa bài tập 21 trang 15 SGK Gv đưa đề bài trên bảng phụ 12.30.40 ? - Cho hs lớp nhận xét bài làm của bạn và cho điểm - Hai hs lần lượt lên kiểm tra - HS 1: Nêu định lí trang 12 SGK Thực hiện bài tập 20d trang 15 SGK - HS 2: Phát biểu hai quy tắc trang 13 SGK Thực hiện bài tập 21 trang 15 SGK - Chọn (B) : 120 - Bài tập 20d trang 15 SGK (3 a )2 0, 2 180 a2 (1)
= 9 – 6a + a2 - 2 0, 2.180a = 9 – 6a + a2 - 36a2 = 9 – 6a + a2 - 6 a (1)
* Nếu a 0 a a (1) =9 – 6a + a2 – 6a =9 – 12a + a2 * Nếu a < 0 a a (1) = 9 – 6a + a2 + 6a = 9 + a2
Trang 2
HĐ 2 : Luyện tập (30 phút)
* Dạng 1 : Tính giá trị căn thức
- Bài tập 22 a,b trang 15 SGK
Biến đổi các biểu thức dưới dấu căn
thành dạng tích rồi tính :
a) 132 122 b) 172 82
- Theo đề bài, ta có nhận xét gì về
các biểu thức dưới dấu căn ?
- Hãy biến đổi HĐT rồi tính Gọi
hai hs đồng thời lên bảng làm bài
- Gv kiểm tra các bước biến đổi và
cho điểm hs
- Bài tập 24 trang 15 SGK
Gv đưa bảng phụ ghi đề bài
Rút gọn và tìm giá trị (làm tròn đến
chữ số thập phân thứ ba) của các căn
thức sau :
a) 4(1 6 x 9 ) x2 2 tại x = 2
- Tìm giá trị biểu thức tại x = 2
b) 9 ( a b2 2 4 4 ) b tại a=-2;b=- 3
- Gv yêu cầu hs về nhà giải tương tự
* Dạng 2 : Chứng minh
- Bài tập 23b trang 15 SGK
Chứng minh: ( 2006 2005)
- Các biểu thức dưới dấu căn là hằng đẳng thức số 3 (hiệu hai bình phương)
- Hai hs thực hiện bài tập trên bảng
- Hs rút gọn biểu thức dưới sự hướng dẫn của gv Lần lượt mỗi hs đọc tại chỗ các bước biến đổi
- Một hs lên bảng tính
- Bài tập 22 a,b trang 15 SGK
a) 132 122 = (13 12)(13 12)
= 25 = 5
b) 172 82 = (17 8)(17 8)
= 25.9 = 25 9 = 15
- Bài tập 24 trang 15 SGK
a) 4(1 6 x 9 ) x2 2 tại x = 2 = 4 (1 3 ) x 2 = 22 (1 3 ) x 2 = 2(1 + 3x)2 vì (1 + 3x)2 0 x Với x = 2 ta được:
2 1 3( 2) 2
2
21,029
- Bài tập 23b trang 15 SGK
t18
Trang 3
( 2006 2005) là hai số nghịch
đảo của nhau
-Thế nào là hai số nghịch đảo của nhau
- Với bài tập này ta phải chứng
minh điều gì ?
- Gọi 1 hs lên bảng thực hiện
- Bài tập 26a trang 7 sách BT
Chứng minh 9 17 9 17 8
- Để chứng minh một đẳng thức ta
làm thế nào ? Cụ thể với bài này
- Nhận xét vế trái
- Gọi một hs lên bảng thực hiện
* Dạng 3 : Tìm x
- Bài tập 25a, d, g trang 16 SGK
a) 16 x 8
- Vận dụng định nghĩa về căn bậc hai
để tìm x ta có gì ?
- Ta còn cách làm nào nữa không?
hãy vận dụng quy tắc khai
phương một tích để biến đổi vế trái
d) 4(1 x )2 6 0
- Tổ chức hoạt động nhóm cho hs
- Hai số nghịch đảo của nhau khi tích của chúng bằng 1
- Hs lên bảng thực hiện
- Biến đổi vế phức tạp (vế trái) để bằng vế đơn giản (vế phải)
- Là tích của hai căn thức bậc hai
- Hs lên bảng thực hiện
- Có 8 > 0 và 16x = 82
- Một hs đọc tại chỗ, gv ghi bài giải theo cách hai
16 x 8
16 x 8 4 x 8
x 2 x 4
- Hs họat động theo nhóm
- Đại diện nhóm trình bày bài giải.
= ( 2006)2 ( 2005)2
= 2006 - 2005 = 1
Vậy hai số đã cho là nghịch đảo của nhau
- Bài tập 26a trang 7 sách BT
VT = 9 17 9 17
= (9 17)(9 17)
= 64 = 8 = VP
- Bài tập 25a, d, g trang 16 SGK
a) 16 x 8
16 x 82
16 x 64
x 4
d) 4(1 x )2 6 0
2 1 x 6
1 x 3
* Nếu 1 x 0 x 1 thì:
1 – x = 3 x = -2
* Nếu 1 x 0 x 1 thì:
x – 1 = 3 x = 4 Phương trình có hai mghiệm:
x1 =-2 ; x2 = 4
t19
Trang 4
- Gv kiểm tra bài làm của các nhóm,
sửa chửa, uốn nắn sai sót của hs Hs lớp nhận xét, sửa bài g) Vô nghiệm vì –2 < 0 x 10 2
Trang 5
HĐ 3: Bài tập nâng cao (5 phút)
- Bài tập 33a trang 8 sách BT
Tìm điều kiện của x để biểu thức sau có
nghĩa và biến đổi chúng về dạng tích
x2 4 2 x 2
- Biểu thức A phải thỏa mãn điều kiện
gì để A xác định ?
-Vậy biểu thức trên có nghĩa khi nào?
- Hãy tìm điều kiện của x để 2
4
x và x 2 đồng thời có nghĩa ?
- Cho hs suy nghĩ làm tiếp yêu cầu
còn lại của bài tập trên
- A xác định khi A 0
- Khi x 2 4 và x 2 đồng thời có
nghĩa
- x 2 4 ( x 2)( x 2) có nghĩa khi ( x 2)( x 2) 0 hay x 2 hoặc
2
x
x 2 có nghĩa khi x 2
2
x
thì biểu thức đã cho có nghĩa
- Hs lên bảng thực hiện
- Bài tập 33a trang 8 sách BT
* x2 4 2 x 2
x ( x 2)( x 2) có nghĩa
khi ( x 2)( x 2) 0
2 0
2 0
x x
hoặc x x 2 0 2 0
2 2
x x
hoặc x x 2 2
2
x
hoặc x 2 (1)
x 2 có nghĩa khi x 2 0
x 2 (2) Từ (1) và (2) với x 2 thì biểu thức
x2 4 2 x 2 có nghĩa
* x2 4 2 x 2
( x 2)( x 2) 2 x 2
= x 2 x 2 2 x 2
= x 2 ( x 2 2)
t20
Trang 6
IV/- Hướng dẫn về nhà : (2 phút)
- Xem lại các bài tập luyện tập tại lớp
- Làm bài tập về nhà số 22c d, 24b, 25b,c, 27 trang 15, 16 SGK
- Nghiên cứu trước bài 4
V/- Rút kinh nghiệm :