Trong nội dung dạy toán ở Tiểu học, học sinh đợc làm quen với nhiều loại Toán, nhiều phơng pháp giải khác nhau, mỗi phơng pháp giải là một công cụ để học sinh giải toán nh: Phơng pháp sơ
Trang 1Mở đầu
1 Lý do chọn đề tài
Theo quan điểm của Đảng ta là xây dựng nền giáo dục có tính nhân dân tính dân tộc, khoa học và hiện đại theo định hớng XHCN, giáo dục con ngời Việt Nam phát triển toàn diện, có đạo đức, tri thức, sức khoẻ và thẩm mĩ, phát triển năng lực cá nhân, đào tạo những con ngời lao động có kĩ năng nghề nghiệp, năng
động, sáng tạo, chủ động
Trong nội dung dạy toán ở Tiểu học, học sinh đợc làm quen với nhiều loại Toán, nhiều phơng pháp giải khác nhau, mỗi phơng pháp giải là một công cụ để học sinh giải toán nh: Phơng pháp sơ đồ đoạn thẳng, phơng pháp giả thiết tạm,
ph-ơng pháp thử chọn, phph-ơng pháp tính ngợc từ cuối… Tuy nhiên để nâng cao khả năng giải toán cho học sinh thì việc vận dụng nhiều phơng pháp giải toán khác nhau cho một bài toán là rất cần thiết, nhất là đối với học sinh khá, giỏi Một số bài toán đợc giải bằng nhiều phơng pháp khác nhau sẽ giúp học sinh rèn luyện đợc khả năng t duy sáng tạo của mình Để giúp các em làm quen với một cách giải khá trừu tợng mà bấy lâu nay chỉ áp dụng với học sinh khá giỏi, bản thân tôi đã chọn
đề tài làm khoá luận tốt nghiệp của mình là: “áp dụng phơng pháp biểu đồ hình
chữ nhật để giải các bài toán có lời văn ở Tiểu học“.
2 Nhiệm vụ nghiên cứu
- Tìm hiểu thực tế trong việc dạy học toán có lời văn ở Tiểu học
- Vận dụng phơng pháp biểu đồ hình chữ nhật để giải các bài toán có lời văn
Trang 2Nội dung
1 Đặc điểm vai trò của môn Toán ở Tiểu học
1.1 Đặc điểm môn Toán ở Tiểu học
Môn Toán ở Tiểu học là một môn học thống nhất, không chia thành các phân môn Hạt nhân của môn Toán ở Tiểu học là số học (bao gồm số học các
số tự nhiên, phân số, số phận phân Các nội dung về đại lợng cơ bản, yếu tố đại số, yếu tố hình học, toán có lời văn đợc sắp xếp gắn bó với nội dung số học tạo ra sự
hỗ trợ lẫn nhau giữa các nội dung của môn Toán)
Sự sắp xếp các nội dung trong mối quan hệ với nhau không làm mất đi, mờ
đi đặc trng của từng nội dung
Cấu trúc của môn Toán ở Tiểu học đợc thực hành chủ yếu bằng con đờng thực hành luyện tập và đợc thờng xuyên củng cố phát triển, vận dụng trong đời sống
1.2 Vai trò của môn Toán ở Tiểu học
Môn toán ở Tiểu học cũng nh môn Toán ở trờng phổ thông là một môn học công cụ, cung cấp những kiến thức, kĩ năng phơng pháp góp phần xây dựng nền tảng văn hoá phát triển của con ngời lao động mới, là, chủ tập thể Những kiến thức Toán học cơ bản sẽ giúp cho học sinh có cơ sở để học các môn học khác và từ
đó nắm đợc quy luật của thế giới khách quan “Giúp học sinh giải thích đợc sự vật
đúng với chân lí đồng thời xác định ngay thái độ của họ đối với sự vật hiện tợng
đang học” Tố Hữu
Môn toán góp phần đào tạo về nhiều mặt con ngời lao động mới phát triển toàn diện Nó giúp chúng ta rèn luyện đợc những đức tính quý báu nh: cần cù,
Trang 3nhẫn lại, tự lực cánh sinh, ý chí vợt khó, yêu thích chính xác, chân lí (Phạm Văn
Đồng – Th gửi các bạn trẻ yêu toán học 10/1967)
2 Sơ lợc về bài toán
Theo G.Polya thì “Bài tập đặt ra sự cần thiết phải tìm hiểu một cách có ý thức phơng tiện tích hợp để đạt tới một mục đích rõ ràng nhng không thể đạt đợc ngay Trong bất cứ bài tập nào cũng có ẩn Nếu tất cả các điều đã biết rồi thì không cần phải làm nữa Trong bài tập phải có điều gì đó đã cho (gọi là dữ kiện), nếu không cho biết cái gì thì không có khả năng nào để nhận ra cái cần tìm trong bất cứ bài tập nào cũng phải có đờng lối cụ thể hoá mối quan hệ giữa
ẩn số và dữ kiện”.
Nh vậy bài tập là một số tình huống có vấn đề có tính xác định cao nó đợc hình thành t tình huống có vấn đề trong hoàn cảnh cụ thể Cấu trúc của nó là một tình huống có tâm lí, đòi hỏi chủ thể phải có hành động nhằm thoả mãn nó trong tình huống chứa đựng cái dữ kiện, ẩn số và mối quan hệ giữa chúng đối với chủ thể là những yếu tố cơ bản của bài tập Khi thoả mãn đợc các yếu tố này tức là giải đợc bài tập, chủ thể đợc nhận thức mới, phát triển mới
3 Vị trí, chức năng của bài toán
3.1 Vị trí chức năng của bài tập toán học
Đối với học sinh Tiểu học có thể xem giải toán là hình thức chủ yếu của các hoạt động toán học Các bài toán là các phơng tiện có hiệu quả và không thể thay thế đợc trong việc giúp học sinh nắm vững tri thức, phát triển t duy, hình thành kĩ năng, kĩ xảo vận dụng vào thực tiễn Qua việc giải toán học sinh làm quen với thái
độ lao động có mục đích, tính độc lập suy nghĩ tính kinh tế trong công việc Hoạt
Trang 4động giải bài tập toán học là điều kiện thực hiện tốt các mục đích giảng dạy ở tr-ờng Tiểu học
3.2 Chức năng của bài tập bài toán ở Tiểu học
Trong thực tiễn dạy học, các bài tập toán học đợc sử dụng với các mục đích khác nhau Mỗi bài tập đều có thể dùng để tạo tiền đề xuất phát, để gợi động cơ, hình thành kiến thức mới, cũng có thể dùng để củng cố, kiểm tra Mỗi bài toán cụ thể đợc đặt ra trong quá trình dạy học đều chứa đựng những chức năng khác nhau Những chức năng này đều hớng tới mục đích là dạy học toán
4 Các bớc giải một bài toán
Trong cuốn “Giải một bài toán nh thế nào?” Polya đã đa ra các bớc giải
một bài toán nh sau:
- Tìm hiểu nội dung bài toán
- Tìm tòi, lập kế hoạch giải toán
- Thực hiện cách giải bài toán
- Kiểm tra và nghiên cứu bài toán
5 Thực trạng việc giải toán bằng phơng pháp biểu đồ hình chữ nhât ở tiểu học:
Việc vận dụng phơng pháp biểu đồ hình chữ nhật để giải các bài toán có lời văn ở Tiểu học là cần thiết để rèn luyện t duy toán học cho học sinh Qua việc dự giờ và cho học sinh làm bài kiểm tra ở các lớp 4A, 4B, lớp 5A, 5B tại các trờng Tiểu học trong địa bàn nơi tôi dang công tác đã cho thấy: Trong khi giải toán học sinh cha biết cách sử dụng biểu đồ hình chữ nhật để thể hiện mỗi quan hệ giữa các
đại lợng trong bài toán vì thế dẫn đến việc quan hệ giữa các đại lợng trong bài toán vì thế dẫn đến việc các em lúng túng trong bớc thực hành giải không biết vận dụng công thức tính diện tích hình chữ nhật lúc nào, ở đâu?
Trang 5Chính vì điều này mà trong khi giải bài toán có lời văn học sinh không sử dụng phơng pháp biểu đồ hình chữ nhật để giải một cách thờng xuyên
Chẳng hạn khi kiểm tra bài:
Ôtô đi từ A đến B với vận tốc 30 km/giờ Sau đó ôtô đi từ B về A với vận tốc
45 km/giờ Tính quãng đờng AB biết thời gian đi từ B đến A ít hơn thời gian đi từ
A đến B là 40 phút
Với bài toán này có 69/75 học sinh làm đúng trong đó có 51 học sinh vận
dụng tỉ số 4530 32
2
1 = =
v
v
do quãng đờng khôi đổi, vận tốc và thời gian là hai đại lợng
tỉ lệ nghịch, chuyển bài toán về dạng tìm hai số khi biết hiệu và tỉ số ( 23
2
1t =
t ; t1
– t2 = 40 (phút))
Có 10 học sinh vận dụng giải bài toán bằng cách giải phơng trình đại số và chỉ có 8 học sinh giải bằng cách vận dụng biểu đồ hình chữ nhật
Đổi 40 phút = 32 (giờ)
Diện tích hình chữ nhật S1 là:
20 3
2
30 ì =
Diện tích hình chữ nhật S2 là: 20
Thời gian đi từ B về A là :
S 2
45
30
S1 C
B M
D t
1
A
t2
40p’
Trang 64 15 :
20 = (giờ) Quãng đờng AB dài là:
60 3
4
45 ì = (km) Khi sử dụng phơng pháp biểu đồ hình chữ nhật để giải toán học sinh trình bày sơ sài, hầu nh không lập luận chặt chẽ
Ngay cả khi hớng dẫn học sinh giải các bài toán có lời văn bằng cách áp dụng biểu đồ hình chữ nhật thì giáo viên cũng cha chỉ rõ học sinh biết các
đại lợng trong bài toán biểu thị mối quan hệ trên hình nh thế nào và khi nào thì áp dụng công thức diện tích hình chữ nhật để giải bài toán Nh ví dụ trên khi chữa bài giáo viên không chỉ rõ cho học sinh biết quãng đờng bằng vận tốc nhân với thời gian là tích hai đại lợng gợi ý cho chúng ta nghĩ đến diện tích hình chữ nhật
Khi đặt câu hỏi “Diện tích hình chữ nhật đ ợc tính bằng công thức nào?”
thì tất cả học sinh đợc hỏi đều trả lời: “S = a x b” nhng với câu hỏi “Công thức tính diện tích hình chữ nhật S = a x b đợc vận dụng để giải các bài toán nh thế nào?” thì học sinh không trả lời đợc, chứng tỏ học sinh không hình dung đợc cách
vận dụng công thức
Nhìn chung trong quá trình dự giờ và cho học sinh làm bài kiểm tra cho thấy khi giải các bài toán có lời văn học sinh ít sử dụng phơng pháp biểu đồ hình chữ nhật để giải, nếu có thì cũng chỉ sử dụng phơng pháp này nh cách giải thứ hai
6 Một số biện pháp để nâng cao khả năng vận dụng phơng pháp biểu
đồ hình chữ nhật để giải các bài toán có lời văn ở Tiểu học.
- Ngoài việc có những biện pháp để khắc phục những sai lầm trong khi giải toán có lời văn bằng phơng pháp áp dụng biểu đồ hình chữ nhật, cần có một số giải pháp sau:
+ Khi đa ra công thức tính diện tích hình chữ nhật giáo viên cần phân tích kĩ công thức tính diện tích: S = a x b và công thức ngợc a = S : b ; b = S : a
Trang 7để xem công thức có liên quan đến mấy đại lợng, các đại lợng có liên hệ gì với nhay Ngoài ra còn nêu dấu hiệu, tính chất cơ bản của diện tích Hớng dẫn học sinh phân tích để tìm ra mối quan hệ giữa các dữ kiện từ đó định hớng cách giải
+ Thống kê, phân loại các bài toán có lời văn dùng phơng pháp đồ thị hình chữ nhật trong khi giải
+ Cần cho học sinh luyện tập thờng xuyên các bài toán trên, ra các đề tơng
tự, nâng dần mức độ để học sinh t duy
1 Các ví dụ:
Ví dụ 1: Theo kế hoạch một đoàn xe chở khối lợng xi măng từ g về công
tr-ờng xây dựng Mỗi xe chỉ chở đợc 1 chuyến trọng tải 2,5 tấn Trớc khi chở hai xe
bị điều động đi làm việc khác Do đó, để chở nốt số xi măng cần tăng trọng tải lên
3 tấn Tính khối lợng xi măng cần chở
Bớc 1:
- Bài toán cho biết
Kế hoạch mỗi xe chở 1 chuyến xi măng trọng tải 2,5 tấn Hai xe đều bị điều dộng đi nên để chở nốt số xi măng phải tăng trọng tải mỗi xe lên 3 tấn
- Bài toán yêu cầu
Tính khối lợng xi măng cần chở
Trang 8Bớc 2: Vẽ biểu đồ hình chữ nhật để biểu hiện mối quan hệ giữa các đại lợng:
Khối lợng
không đổi và đợc biểu thị bằng hình chữ nhật OABD hay diện tích hình chữ nhật OEGH Chứng minh đợc diện tích hình chữ nhật DBIH bằng diện tích hình chữ nhật AEGI
Tính đợc diện tích hình chữ nhật AEGI tính đợc diện tích hình chữ nhật DBIH Tính đợc số xe (HI) ta tìm đợc số xi măng cần chở
Bớc 3:
Theo đề bài mỗi xe dự kiến chở 2,5 tấn thì số xe tơng ứng biểu thị bằng
đoạn OA
Khối lợng xi măng cần chở biểu thị bằng diện tích OABD Thực tế mỗi xe chở 3 tấn thì số xe biểu thị bằng đoạn OE (OE = OA + 2)
Khối lợng xi măng cần phải chở biểu thị bằng diện tích hình chữ nhật OEGH
Do khối lợng xămg cần phải chở không thay đổi nên diện tích hình chữ nhật AEGI bằng diện tích hình chữ bằng diện tích hình chữ nhật DBIH
Suy ra diện tích hình chữ nhật DBGH bằng diện tích AEGI
Diện tích hình chữ nhật AEGI là:
Trọng tải
3 2,5
D
A
B
G
I
E A
Số xe
2
Trang 92,5 x 2 = 5 Diện tích hình chữ nhật DBIH là:
(3,5 – 2 ) x IH = 0,5 x OA Suy ra: OA = 5 : 0,5 = 10
Khối lợng xi măng cần phải chở là:
10 x 3 = 30 (tấn) Bớc 4: Kiểm tra kết quả
Ghi đáp số đúng: 30 tấn
Ví dụ 2: Một đội vận tải định điều một số thuyền đi chở hàng Nếu điều
thuyền trọng tải 16 tấn thì còn thiếu 1 thuyền Nếu điều thuyền trọng tải 16 thì còn thiếu 1 thuyền Nếu điều thuyền trọngt ải 20 tấn thì chở thêm đợc 24 tấn nữa Tính khối lợng hàng định chở của đội vận tải đó
Bớc 1:
- Bài toán cho biết:
Trọng tải 16 tấn thiếu 1 thuyền Trọng tải 20 tấn thì chở thêm đợc 24 tấn
- Bài toán yêu cầu:
Tính khối lợng hàng hoá định chở
Trang 10Bớc 2: Biểu đồ hình chữ nhật
Để tính đợc khối lợng hàng ta tính diện tích hình chữ nhật BEDA sau đó tính độ dài OC (bằng độ dai AB)
Bớc 3:
Nếu điều thuyền trọng tải 16 tấn thì thiếu 1 thuyền tức là khối lợng thừa ra
16 tấn
Khối lượng hàng định chở Số thuyền, khối lượng thuyền
Diện tích OABC
OC, OA
Diện tích BEDA, diện tích hình chữ nhật OABC cộng thêm 16 tấn (1 thuyền)
O
A
16 B
20
Trang 11Nh vậy diện tích hình chữ nhật ADEB biểu thị khối lợng hàng chính bằng nhau sau khi điều thuyền trọng tải 16 tấn và 20 tấn và bằng:
16 + 24 = 40
Số thuyền trọng tải 16 tấn biểu thị bằng cạnh OC (bằng cạnh AB) của hình chữ nhật ADEB và bằng:
40 : 4 = 10 (thuyền) Khối lợng hàng dự định chở là:
16 x 10 + 16 = 176 (tấn) Bớc 4: Kiểm tra kết quả
Ghi kết quả đúng 176 tấn
2 Bài tập tham khảo:
Bài 1: An và Bình cùng đọc hai cuốn truyện giống nhau Trung bình mỗi
ngày An đọc đợc 10 trang Bình đọc đợc 15 trang
Hỏi cuốn truyện này bao nhiêu trang Biết An bắt đầu đọc sau Bình 2 ngày
và Bình đọc xong trớc An 7 ngày
Bài 2: Theo kế hoạch xởng mộc trờng em mỗi ngày phải đóng 48 cái ghế.
Nhng vì mỗi ngày đóng vợt mức 2 cái, nên trớc khi hết hạn 3 ngày, xởng mộc chỉ còn phải đóng 100 cái ghế nữa thì hoàn thành kế hoạch Hỏi theo kế hoạch xởng mộc trờng em phải đóng bao nhiêu cái ghế và trong thời gian bao lâu?
Bài 3: Theo kế hoạch một đội công nhân phải đắp xong một đoạn đờng.
Mỗi ngời phải đắp xong 12m Trớc khi tiến hành 5 ngời bị điều động đi làm việc khác Do đó, để đắp nốt đoạn đờng thì mỗi ngời công nhân phải đắp thêm 3m Tính đoạn đờng cần đắp
2 Loại toán “Vòi nớc chảy vào bể“
2.1 Các ví dụ:
Ví dụ 1: Cùng một lúc ngời ta vặn hai cái vòi cho chảy vào hai cái bể có thể tích (dung tích) ngang nhau Mỗi phút vòi thứ nhất chảy đợc 50 lít, còn vòi thứ 2
Trang 12chảy đợc 30 lít Biết rằng bể thứ nhất đầy trớc bể thứ hai là 10 phút Tính dung tích mỗi bể
Vì hai bể có thể tích (dung tích) ngang nhau Vì thể tích (dung tích) nh nhau nên thời gian và sức chảy là hai đại lợng tỉ lệ nghịch Do đó, ta có thể giải bài toán bằng cách áp dụng phơng pháp biểu đồ hình chữ nhật
Bớc 1:
- Bài toán cho biết
Sức chảy của vòi 1 là 50 lít/phút, vòi 2 là 30 lít/phút, thời gian chảy đầy bể
ở vòi 1 hơn ở vòi 2 là 10 phút
- Bài toán yêu cầu
Tính thể tích (dung tích) mỗi bể
Bớc 2:
- Biểu đồ hình chữ nhật:
Sức chảy
50 30
G
C
E
B M
S1
S2
D
t1 20p’ At2 Thời gian O
Trang 13Biết đợc cạnh OC, DA ta tính đợc diện tích hình chữ nhật ABMD vì thể tích của hai bể nớc là ngang nhau nên diện tích hình chữ nhật ABMD bằng diện tích hình chữ nhật CMEG do đó có phần ODMC chung Từ đó ta tính đợc thời gian chảy đầy
bể 2 biết đợc thời gian ta tính đợc thể tích của bể
Bớc 3: Thực hành giải
Từ biểu đồ ta có diện tích hình chữ nhật ABMD là:
5 60
10
30 ì = (Do OC = DM)
Do thể tích hai bể ngang nhau, mà thể tích bể 1 biểu thị bằng hình chữ nhật ODEG, thể tích bể 2 biểu thị bằng diện tích hình chữ nhật OABC Có phần chung
là hình chữ nhật ODMC nên diện tích hình chữ nhật CMEG bằng diện tích hình chữ nhật ABMD
Thời gian vòi nớc thứ nhất chảy đợc biểu thị bằng cạnh MC cuả hình chữ nhật CMEG và bằng
4
1 20 :
50 = (giờ)
đổi
4
1
giờ = 15 phút Vậy thể tích bể 1 là:
15 x 50 = 750 (lít) Vì thể tích (dung tích) hai bể ngang nhau nên thể tích (dung tích) bể 2 cũng bằng 750 lít
Bớc 4: Kiểm tra kết quả
Thể tích bể Sức chảy vòi 1, 2
Thời gian chảy vòi 1 Diện tích MBAD, DA
Diện tích CMEG DA, OC, BD
Trang 14Ghi kết quả đúng:
Thể tích bể 1: 750 lít Thể tích bể 2: 750 lít
2.2 Bài tập tham khảo
Bài 1:
Lúc 7 giờ 10 phút ngời ta mở một cái vòi cho nớc chảy vào một cái bể, mỗi phút đợc 40 lít Lúc 7 giờ 30 phút ngời ta mở một cái vòi khác cho chảy vào
bể thứ 2 mỗi phút đợc 50 lít Biết rằng dung tích hai bể bằng nhau và bể thứ nhất
đầy trớc bể thứ 2 là 2 giờ 5 phút Tính dung tích mỗi bể
Bài 2:
Có hai bể nớc to bằng nhau.Lúc 7 giờ ngời ta mở một cái vòi nớc vào một cái bể, mỗi phút đợc 50 lít Đến 7 giờ 20 phút ngời ta mở một cái vòi nớc khác vào cái bể thứ 2 mỗi phút chảy đợc 60 lít Biết rằng bể có một lỗ dò thót ra mỗi phút mất 10 lít vào 2 bể cùng đầy một lúc Tính dung tích mỗi bể?
Tiết 3: Toán :
$40: Hai đờng thẳng vuông góc
I) Mục tiêu : Giúp học sinh:
1, KT:- Có biểu tợng về hai đờng thẳng vuông góc Biết đợc hai đờng thẳng
vuông góc với nhau tạo thành 4 góc vuông có chung một đỉnh
- Biết dùng ê ke để kiểm tra hai đờng có vuông góc với nhau không? 2,KN: áp dụng toàn bộ những kiến thức đã học vào làm các bài tập thành
thạo
3, GD: Tính chính xác, tự giác , độc lập ,yêu môn học
II) Đồ dùng :
- ê ke - thớc thẳng
- Phơng pháp: Đàm thoại , giảng giải , quan sát , Luyện tập