1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải phần giải mạch P13

63 158 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài giải phần giải mạch P13
Trường học University of Electrical Engineering and Telecommunications
Chuyên ngành Electrical Engineering
Thể loại Giáo trình hướng dẫn giải bài tập
Thành phố Hà Nội
Định dạng
Số trang 63
Dung lượng 2,42 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

a For the series connection shown in Figure a, the current I enters each coil from its dotted terminal.. 1 1We replace the coupled inductance with an equivalent T-section and use series

Trang 1

Chapter 13, Solution 1

For coil 1, L 1 – M 12 + M 13 = 6 – 4 + 2 = 4

For coil 2, L 2 – M 21 – M 23 = 8 – 4 – 5 = – 1

For coil 3, L 3 + M 31 – M 32 = 10 + 2 – 5 = 7

L 1 = 3L 2 = 150 mH

k = M/ L1L2 = 2.5/ 50x150 = 0.2887

Trang 2

Chapter 13, Solution 4

(a) For the series connection shown in Figure (a), the current I enters each coil from its dotted terminal Therefore, the mutually induced voltages have the same sign as the self-induced voltages Thus,

ωω

1 s

s

I

ILjMj

MjLjV

Trang 3

Chapter 13, Solution 5

(a) If the coils are connected in series,

=+

+

=++

=

−+

36.19x6025

36.1960x25M2LL

MLLL

2 2

1

2 2

Trang 4

2j6j1010

Trang 5

0 = –I 1 (1/(j ωC)) + (jωL 1 + j ωL 2 + (1/(j ωC)) – j2ωM)I 2 – j ωL 1 I 3 + j ωMI 3

For mesh 3, –V2 = –R1I1 – jω(L1 – M)I2 + (R1 + R2 + jωL1)I3

or V2 = R 1 I 1 + j ω(L 1 – M)I 2 – (R 1 + R 2 + j ωL 1 )I 3

Trang 6

1 1

We replace the coupled inductance with an equivalent T-section and use series and

parallel combinations to calculate Z Assuming that ω =1,

10,

101020,

810

Trang 7

12Ω j8 Ω j10 Ω 2 Ω

j10Ω

j6

I j2

Note that the two coils are connected series aiding

ωL = ωL 1 + ωL 2 – 2ωM jωL = j6 + j8 – j4 = j10

I = (– 8 + j10)/ (7 + j7)

Trang 8

Clearly, we now have only a super mesh to analyze

(5 + j6)I1 – j2I2 + (2 + j8 – j3)I2 – j2I1 = 0

Substituting (2) into (1), (5 + j4)I 1 +(2 + j3)(1 + I 1 ) = 0

I 1 = –(2 + j3)/(7 + j7) Now, ((5 + j6)I 1 – j2I 1 + V o = 0

Vo = –(5 + j4)I1 = (5 + j4)(2 + j3)/(7 + j7) = (–2 + j23)/(7 + j7) = 2.332∠50°

ZTh = Vo/1 = 2.332∠50° ohms

Trang 10

80∠0o V I1

-

b

80)

28(0

)42

80

j I

+

=

=

To find ZN, insert a 1-A current source at terminals a-b Transforming the current source

to voltage source gives the circuit below

jI I

jI I

0)

Trang 11

j

++

−+

=

=+

Z6j

xZ6jZ

o o

Chapter 13, Solution 18

Let ω =1 L1 =5,L2 =20,M =k L1L2 =0.5x10=5

We replace the transformer by its equivalent T-section

5,

25520,

1055)

=+

++

=+

+

74

)4(627)6//(

)4

(

j

j j

j j j j

Z Th

We find VTh by looking at the circuit below

Trang 12

-j4 j10 j25 j2

+ -j5

Th

j j

H,5525

Trang 13

10j5j420

12j

Trang 14

At t = 2 ms, 1000t = 2 rad = 114.6°

i1 = 0.9736cos(114.6° + 143.09°) = –2.445

i2 = 2.53cos(114.6° + 153.61°) = –0.8391 The total energy stored in the coupled coils is

w = 0.5L1i12 + 0.5L2i22 – Mi1i2 Since ωL1 = 10 and ω = 1000, L1 = L2 = 10 mH, M = 0.5L1 = 5mH

w = 0.5(10)(–2.445)2 + 0.5(10)(–0.8391)2 – 5(–2.445)(–0.8391)

w = 43.67 mJ

Chapter 13, Solution 21

For mesh 1, 36∠30° = (7 + j6)I1 – (2 + j)I2 (1)

For mesh 2, 0 = (6 + j3 – j4)I2 – 2I1 jI1 = –(2 + j)I1 + (6 – j)I2 (2)

j26j70

3036

∆ = 48 + j35 = 59.41∠36.1°, ∆1 = (6 – j)36∠30° = 219∠20.54°

∆2 = (2 + j)36∠30° = 80.5∠56.56°, I1 = ∆1/∆ = 3.69∠–15.56°, I2 = ∆2/∆ = 1.355∠20.46° Power absorbed fy the 4-ohm resistor, = 0.5(I2) 2 4 = 2(1.355) 2 = 3.672 watts

Trang 15

Chapter 13, Solution 22

With more complex mutually coupled circuits, it may be easier to show the effects of the coupling as sources in terms of currents that enter or leave the dot side of the coil Figure 13.85 then becomes,

j40 j10I b

− +

-50 + j20(I3 – I2) j 40(I1 – I3) + j10(I2 – I1) – j30(I3 – I2) + j80(I1 – I2) – j10(I1 – I3) = 0

j100I1 – j60I2 – j40I3 = 50 Multiplying everything by (1/j10) yields 10I1 – 6I2 – 4I3 = - j5 (1) Loop # 2,

j10(I1 – I3) + j80(I2–I1) + j30(I3–I2) – j30(I2 – I1) + j60(I2 – I3) – j20(I1 – I3) + 100I2 = 0

-j60I1 + (100 + j80)I2 – j20I3 = 0 (2)

Trang 16

Loop # 3,

-j50I3 +j20(I1 –I3) +j60(I3 –I2) +j30(I2 –I1) –j10(I2 –I1) +j40(I3 –I1) –j20(I3 –I2) = 0

-j40I1 – j20I2 + j10I3 = 0 Multiplying by (1/j10) yields, -4I1 – 2I2 + I3 = 0 (3)

Multiplying (2) by (1/j20) yields -3I1 + (4 – j5)I2 – I3 = 0 (4) Multiplying (3) by (1/4) yields -I1 – 0.5I2 – 0.25I3 = 0 (5)

Multiplying (4) by (-1/3) yields I1 – ((4/3) – j(5/3))I2 + (1/3)I3 = -j0.5 (7)

Multiplying [(6)+(5)] by 12 yields (-22 + j20)I2 + 7I3 = 0 (8) Multiplying [(5)+(7)] by 20 yields -22I2 – 3I3 = -j10 (9) (8) leads to I2 = -7I3/(-22 + j20) = 0.2355∠42.3o = (0.17418+j0.15849)I3 (10) (9) leads to I3 = (j10 – 22I2)/3, substituting (1) into this equation produces,

25 mF converts to 1/(jωC) = 1/(10x25x10 -3 ) = –j4 ohms The frequency-domain equivalent circuit is shown below

Trang 17

For mesh 1, 12 = (j5 – j4)I1 + j2I2 – (–j4)I2

1 H produces jωM = j4

4 H produces j16

2 H becomes j8

Trang 19

Chapter 13, Solution 25

m = k L1L2 = 0.5 H

We transform the circuit to frequency domain as shown below

12sin2t converts to 12∠0°, ω = 2 0.5 F converts to 1/(jωC) = –j

Trang 20

60200

Trang 21

X j j

X j

I

5.1812

1.08.02.1

++

=

X j

X j j I

Z Th

1.08.02.1

5.18121

−+

=

=

62472

75.108

.0)1.02.1(

)5.18(1220

|

2 2

2 2

−+

=

→

+

−+

Trang 22

+

165∠0°

Trang 23

(a) Zin = j40 + 25 + j30 + (10)2/(8 + j20 – j6)

= 25 + j70 + 100/(8 + j14) = (28.08 + j64.62) ohms

(b) jωLa = j30 – j10 = j20, jωLb = j20 – j10 = j10, jωLc = j10 Thus the Thevenin Equivalent of the linear transformer is shown below

Trang 24

Z in

L A

Zin = jωLa + ω2Ma2/(jωLa + Zin) = (–ω2La2 + ω2Ma2 + jωLaZin)/( jωLa + Zin) (2)

Trang 25

Substituting (1) into (2) gives,

=

b

2 b 2 2 b

2 b a

b

2 b 2 2 b

2 b a

2 a 2 2 a 2

LjR

ML

RLjLj

LjR

)ML

RLj(LjML

ω+

ω+ω

−ω+ω

ω+

ω+ω

−ωω+ω+ω

j12Ω j10 Ω j4 Ω

1<0o V I1 I2

- -j2Ω

Trang 26

For loop 1,

2

1 4)101(

For loop 2,

2 1

1 1

)2104

=

I

Z 1 1.6154 9.077 9.219 79.911

Alternatively, an easier way to obtain Z is to replace the transformer with its equivalent

T circuit and use series/parallel impedance combinations This leads to exactly the same result

o

j

A 85.1340775

.00549.00547.02

o

j

A 41.110077

.00721.00268.03

Trang 27

000,50000

,

2 2 2 1 1

= (1200/240)( 15.7∠20.31°) = 78.5∠20.31° A

Trang 28

Chapter 13, Solution 40

V60)240(4

1nVV

V

Vn,4

12000

500N

N

1

2 1

=

W30012

60R

2

I50j20(

Trang 29

At the terminals of the transformer,

1 2 1

V

2 1

1

4

1n

1I

Trang 30

I2” = –I1”/n = –vm/(Rn2) Hence, i1(t) = (v m /Rn)cos ωt A, and i2(t) = (–v m /(n 2 R))cos ωt A

j8

ω

Trang 31

j7248

904I

36j72Z9n

Z

We now have some choices, we can go ahead and calculate the current in the second loop and calculate the power delivered to the 8-ohm resistor directly or we can merely say that the power delivered to the equivalent resistor in the primary side must be the same as the power delivered to the 8-ohm resistor Therefore,

=

=

Ω 72 0.5098x10 722

Hence, I1 = 1.072∠5.88° A, and I2 = –0.5I1 = 0.536∠185.88° A

(b) Switching a dot will not effect Zin but will effect I1 and I2

I1 = (16∠60° – 5∠30°)/(13 + j14) = 0.625 ∠25 A

and I2 = 0.5I1 = 0.3125∠25° A

Trang 32

Substituting this into (1), 10 = 10I1 – 10I3 (7)

Substituting (4) and (6) into (3) yields

II10j10410

106

10

0333.01

3 2 1

Trang 33

I2 =

33.93j20

100j1002

From (2) and (9), v1 = –6I2

Substituting this into (1),

10 = 10I1 – 10I3 – 6I2 = (23 – j5)I1 (11) Substituting (9) and (10) into (3),

0 = –10I1 + 4I2 + 10(1 – j)I3 (12) From (10) to (12), we get

II10j10410

106

10

0333.01

3 2 1

I2 =

33.93j20

100j1002

We apply mesh analysis

Trang 34

1 2

1 4)

48(

2 1

2 4)

210(

But

2 1 1

2

1

V V n

1

n I

2 2

)410(

Solving (1)a and (2)a leads to I2 = -3.5503 +j1.4793

A 4.157923.15

2 1

Trang 35

At node 1,

2 1

1 1

2 1

102

12

V j j

V I I

j

V V

2 2

2 1

6

V j

V V

0),8.01(6

Adding these gives V1=1.829 –j1.463 and

o x

j

V j

V V

10

410

1 2

937

Let Z3 = 36 +j18, where Z3 is reflected to the middle circuit

ZR’ = ZL/n2 = (12 + j2)/4 = 3 + j0.5

Zin = 5 – j2 + ZR’ = (8 – j1.5) ohms

I1 = 24∠0°/ZTh = 24∠0°/(8 – j1.5) = 24∠0°/8.14∠–10.62° = 8.95∠10.62° A

Trang 37

For maximum power transfer,

Trang 38

At the terminals of the transformer,

Trang 40

For mesh 3, 0 = 40I3 – 20I1 which leads to I1 = 2I3 (3)

At the transformer terminals, v2 = –nv1 = –5v1 (4)

p20(the one between 1 and 3) = 0.5(20)(I1 – I3)2 = 10(20/7)2 = 81.63 watts

p20(at the top of the circuit) = 0.5(20)I32 = 81.63 watts

Trang 41

We transfer this to the primary side

Trang 42

I1 = 40/Zin = 40/7.767∠11.89° = 5.15∠–11.89°

S = 0.5vsI1* = (20∠0°)(5.15∠11.89°) = 103∠11.89° VA

Trang 43

20Ω

Trang 44

2 1

Substituting these in (1) and (2) leads to

1)

1(20,

0)

3020

Solving these gives

5.7204030

120

4030

2 2

1 4 1

4010

200

I V V

I V V V

=

Trang 45

At node 2,

3 4

1 3

4 4

20

V V

3 3

4 10 505

.3

But from (4) and (7), I1 =−2I2 =−2(−3I3)=6I3 Hence

3

4 1105

.3

From (5), (6), (3), and (7),

3 1

2 2

2 2

4 3(V 50I ) 3V 150I 6V 450I

Substituting for V1 in (2) gives

4 3

3 3

4 4

210

19450

)403

(

Trang 46

Substituting (9) into (8) yields

87.14452

.13

W05.1120

v2 = 120[(1/4)I1] = 30 I1 4v1 = 30I1

4(420) = 1680 = 30I1 or I1 = 56 A

Chapter 13, Solution 67

4.0

1

1 2

2

2 1 2

N

N N V V

160

5000000

,

2 2

,

1 1 1

Trang 47

For the primary circuit, 20∠30° = (2 – j6)I1 + v1 (1)

At the autotransformer terminals,

Trang 48

and v2 = 0.25

I1/I2 = 200/800 = 1/4 which leads to I2 = 4I1

Trang 49

Hence 0.25 = 4I1(75 + j125) or I1 = 1/[16(75 + j125)

ZTh = 1/I1 = 16(75 + j125) Therefore, ZL = ZTh* = (1.2 – j2) kΩ

Substituting (1) and (2) into (3),

120 = (30 + j12)( I2/6) + 6v2 and substituting (4) into this yields

120 = (49 – j38)I2 or I2 = 1.935∠37.79°

p = |I2|2(20) = 74.9 watts

Trang 50

Chapter 13, Solution 71

Zin = V1/I1

But V1I1 = V2I2, or V2 = I2ZL and I1/I2 = N2/(N1 + N2) Hence V1 = V2I2/I1 = ZL(I2/I1)I2 = ZL(I2/I1)2I1

Current in each outgoing line A, B, C is

2778/(n 3 ) = 4812 A

Trang 51

(a) This is a ∆-∆ connection

(b) The easy way is to consider just one phase

Trang 52

But pLs = VpsIps For the ∆-load, IL = 3 Ip and VL = Vp Hence, Ips = 40,000/600 = 66.67 A

Trang 53

240V j0.1

Trang 54

From this, I1 = 4.253∠–8.53° A, I2 = 1.564∠27.49° A

The power absorbed by the 4-ohm resistor = 0.5|I|2R = 0.5(1.564)2x4

= 4.892 watts

Trang 55

Thus, I1 = 1.306∠–68.01° A, I2 = 406.8∠–77.86° mA, I3 = 1.336∠–54.92° A

Trang 56

i.e Io = 1.304∠62.92° A

Trang 57

i.e I1 = 104.5∠13.96° mA, I2 = 29.54∠–143.8° mA,

I3 = 208.8∠24.4° mA

Trang 58

Chapter 13, Solution 82

The schematic is shown below In the AC Sweep box, we type Total Pts = 1, Start Freq

= 0.1592, and End Freq = 0.1592 After simulation, we obtain the output file which includes

i.e V1 = 19.55∠83.32° V, V2 = 68.47∠46.4° V,

Io = 443.4∠–92.6° mA

hapter 13, Solution 83

he schematic is shown below In the AC Sweep box, we set Total Pts = 1, Start Freq

i.e iX = 1.08∠33.91° A

C

T

= 0.1592, and End Freq = 0.1592 After simulation, the output file includes

, Vx = 15.14∠–34.21° V

Trang 59

Chapter 13, Solution 84

he schematic is shown below We set Total Pts = 1, Start Freq = 0.1592, and End

i.e I1 = 4.028∠–52.38° A

T

Freq = 0.1592 After simulation, the output file includes

, I2 = 2.019∠–52.11° A,

I3 = 1.338∠–52.2° A

Trang 62

12 V

110 V

(b) To get 220 V on the primary side, the coils are connected in series, with aiding on the secondary side The coils must be connected series-aiding to give 50 V Thus, the connections are shown below

series-50 V

220 V

Trang 63

(a) For Figure (3), V1/V2 = 550/V2 = (440 – 110)/440 = 330/440

Thus, V2 = 550x440/330 = 733.4 V (not the desired result)

Ngày đăng: 19/10/2013, 18:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN