1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải phần giải mạch P14

73 238 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Giải Phần Giải Mạch P14
Trường học University of Engineering and Technology
Chuyên ngành Electrical Engineering
Thể loại Bài Giải
Thành phố Hà Nội
Định dạng
Số trang 73
Dung lượng 1,76 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The magnitude and phase plots are shown below... Therefore, to increase the bandwidth, we merely add another 20 µF in series with the first one... a This is an RLC series circuit... a Co

Trang 1

Chapter 14, Solution 1

RCj1

RCjCj1R

R)

(

i

o

ω+

ω

=ω+

=

V

V H

=ω)(

H

0

0

j 1

j

ωω+

ωω

, where

RC

1

0

2 0

0)(1)(H

ωω+

ωω

ω

π

0

1 -tan2)(

Trang 2

Chapter 14, Solution 2

=ω+

=ω+

RLj1

1L

jR

R)

(

H

0

j 1

1

ωω+ , where L

R

0

2

0)(1

1)

(H

ωω+

ω

0

1 -tan-)(

H

The frequency response is identical to the response in Example 14.1 except that

LR

RR

sC1

||

RR

Z

sRC1sC

1R

Trang 3

sRC1(sC

1

sC1

Th

i Th

Th

V V

Z

V

++

=

⋅+

=

)sRC1(sRCsRC1)(

sRC1(

1)

sRC1)(

sC1(

1)

s

Th i

o

++

++

=+

+

=

=

Z V

V H(

=)s(

H

1 sRC 3 C R s

1

2 2

0.383-

=

=RC

2.617-

Chapter 14, Solution 4

(a)

RCj1

RC

)RCj1(LjR

RRC

j1

RL

j

RCj1

R)

(

i

o

ω+ω+

=ω++ω

ω+

=

V

V H

=ω)(

H

L j R RLC -

)LjR(CjCj1LjR

LjR)

(

ω+ω+

ω+ω

=ω+ω+

ω+

H

=ω)(

H

RC j LC 1

RC j LC -

2

2

ω+ω

ω+ω

Trang 4

Chapter 14, Solution 5

(a)

Cj1LjR

Cj1)

(

i

o

ω+ω+

ω

=

V

V H

=ω)(

H

LC RC

j 1

1

2

ω

−ω+

(b)

RCj1

RC

)RCj1(LjR

)RCj1(Lj)RCj1(RLj

Lj)

(

i

o

ω+ω+

ω+ω

=ω++ω

ω

=

V

V H

=ω)(

H

RLC L

j R

RLC L

ω

−ω

Chapter 14, Solution 6

(a) Using current division,

Cj1LjR

R)

(

i

o

ω+ω+

=

I

I H

)25.0)(

10()25.0)(

20(j1

)25.0)(

20(jLC

RCj1

RCj)

ω

−ω

+

ω

−ω+

ω

H

=ω)(

5 2 5 j 1

5 j

ω

−ω+ω

(b) We apply nodal analysis to the circuit below

Trang 5

5.0R

x x

x

−+

I

Cj1Lj

5.0

o x

x

ω+ω

I

Cj1Lj

5.0R

1x

s

ω+ω+

=

V I

)Cj1Lj(2

1R

1)Cj1Lj(

2 o

s

ω+ω+

=ω+ω

I I

1R

)Cj1Lj(2o

s = ω + ω +

I I

)LC1

(2RCj

RCjR

)Cj1Lj(21

1)

ω

+ω+

=

I

I H

)25.01(2j

j)

ω

−+ω

ω

H

=ω)(

5 0 j 2

j

ω

−ω+ω

Chapter 14, Solution 7

(a) 0.05=20log10H

Hlog10

5

5 = 10

=

=105 235

H 1 718×10 5

Trang 6

10j)1(H

= 3.9 j1.7 4.254 -23.55

j2

6j1

3)1(H

j1(

1)

(

ω+ω+

H

10/j1log20j

1log20-

HdB = 10 + ω − 10 + ω

)10/(tan)(tan

- -1 ω − -1 ω

The magnitude and phase plots are shown below

HdB

0.1

-40

10 / j 1

1 log

20 10

ω +

ω + j 1

1 log

1 arg

φ

-135°

10 / j 1 arg ω +

ω +-90°

-180°

-45°

Trang 7

5

j1j1

10)

j5(j

50)

j(H

 ω j

1 log 20

j 1

1 log 20

1 arg ω +

ω j

1 arg-90°

)10j1(5)(

ω+ω

ω+

H

2j1log20j

log2010j1log205log20

HdB = 10 + 10 + ω − 10 ω − 10 + ω

2tan10tan90

- °+ -1ω − -1ω

Trang 8

The magnitude and phase plots are shown below

1 10 0.1

-90°

90°

Trang 9

Chapter 14, Solution 12

201.0log20,)10/1

(

)1

ω

j j

j w

-90o

Trang 10

Chapter 14, Solution 13

)10j1()j(

)j1)(

101()j10()j(

j1)

ω+ω

ω+

=ω+ω

ω+

G

10j1log20j

log40j

1log2020-

GdB = + 10 + ω − 10 ω − 10 + ω

10tantan

-180°+ -1ω− -1ω

The magnitude and phase plots are shown below

φ 90°

-90°

-180°

Trang 11

ω+

=

5

j25

10j1j

j125

50)(

H

ω

−ω++

=20log 2 20log 1 j 20log j

2

10 1 j 2 5 (j 5)log

ω

−ω+

°

51

2510tantan

Trang 12

Chapter 14, Solution 15

)10j1)(

2j1(

)j1(2)

j10)(

j2(

)j1(40)

(

ω+ω+

ω+

=ω+ω+

ω+

H

10j1log202j1log20j

1log202log20

HdB = 10 + 10 + ω − 10 + ω − 10 + ω

10tan2tantan-1ω− -1ω − -1ω

The magnitude and phase plots are shown below

j)

(G

+

ω

Trang 13

-20

ωjlog20

10

jlog

1arg

ω+ j1

1argarg(jω)

-180°

ω90°

20 log(1/100) -60

j1(

j)41()

(

ω+ω+

ω

G

2j1log40j

1log20j

log204-20log

GdB = 10 + 10 ω − 10 + ω − 10 + ω

2tan2tan 90° -1ω− -1ω

The magnitude and phase plots are shown below

GdB

-20

20

ω-12

100

1 10 0.1

-40

Trang 14

)2j1(4)

(

2ω+ω+ω

ω+

G

ω

−ω++

=20log 4 50 40log 1 j 2 20log j

10j1log205j1log

20 10 + ω − 10 + ω

− where 20log104 50=-21.94

10tan5tan2tan290

- °+ -1ω − -1ω − -1ω

The magnitude and phase plots are shown below

20

Trang 15

Chapter 14, Solution 19

)10010

j1(100

j)

ω

−ω+

ω

H

10010

j1log20100log20j

log20

10 10

1001

10tan

Trang 16

Chapter 14, Solution 20

)10j1)(

j1(

)j

1(10)(

2ω+ω+

ω

−ω+

N

2 10

10 10

dB 20 20log 1 j 20log 1 j 10 20log 1 j

10tantan

1

2 1

ω

The magnitude and phase plots are shown below

j1)(

10j1(100

)j1(j)

ω

−ω+ω

+

ω+ω

T

100log20j

1log20j

log20

TdB = 10 ω + 10 + ω − 10

Trang 17

j1log2010j1log

ω

−ω

−ω+

°

1001

10tan

10tantan

log20

A zero of slope +20dB/dec at ω=2 → 1+jω 2

A pole of slope -20dB/dec at

20j1

120

ω+

→

Trang 18

A pole of slope -20dB/dec at

100j1

1100

ω+

→

=ωHence,

)100j1)(

20j1(

)2j1(10)

(

ω+ω

+

ω+

j 20 (

) j 2 (

10 4

ω+ω

+

ω+

Chapter 14, Solution 23

A zero of slope +20dB/dec at the origin → j ω

A pole of slope -20dB/dec at

1j1

11

ω+

→

A pole of slope -40dB/dec at 2

)10j1(

110

ω+

→

=ωHence,

2)10j1)(

j1(

j)

(

ω+ω+

ω

H

=ω)(

) j 10 )(

j 1 (

j 100

ω+ω+

1 arg

) 10 / j 1 ( arg + ω

) j ( arg ω

10090°

-90°

45°

Trang 19

)j10)(

10(k)100j1(j

)10j1(k)(

ω+ω

ω+

ω+

G

where k′ is a constant since argk′=0

Hence, G(ω)=

) j 100 ( j

) j 10 ( k

ω+ω

ω+

, where k=10 kis constant

Chapter 14, Solution 25

s/krad5)101)(

1040(

1LC

1

6 - 3

C

4L4jR)4(

0

0 0

)101)(

105(

410

404

105j2000)

4

3 0

Z

)5400050

(j2000)

4(ω0 = + −

Z

=

ω 4)( 0

C

2L2jR)2(

0

0 0

)101)(

105(

2)

1040(2

)105(j2000)

2

3 0

Z

)52000100

(j2000)

4(ω0 = + −

Z

=

ω 2)( 0

C2

1L2jR)2(

0 0

0

Z

Trang 20

)101)(

105)(

2(

1)

1040)(

105)(

2(j2000)

C4

1L4jR)4(

0 0

)101)(

105)(

4(

1)

1040)(

105)(

4(j2000)

Z 2+j 0 75 k

Chapter 14, Solution 26

10101052

12

LC

f o

ππ

1010

R B

101.0

101050

101

3

3 6

L LC R

)80)(

10(RQL0

=

=

Trang 21

1L

=

s/rad625.016

10L

R

B= = =Therefore,

10B

R

L= = =

F2)5.0()1000(

1L

=

5020

1000B

ω+ω+ω

=

j1

jj

1j

Z

Trang 22

21

j1

j

ω+

ω+ω+

−ω

=

Z

Since and v(t) i(t) are in phase,

21

10

)Im(

ω+

ω+ω

−ω

=

=

Z

012

4 +ω − =ω

618.02

411-

2 = ± + =ω

10(

10Q

RL0

=

=

=

F2.0)05.0)(

100(

1L

1

C 20

=

=

s/rad5.0)2.0)(

10(

1RC

LL

X

rad/s10x796.810

x40

10x.510x10x2X

RL

Trang 23

Chapter 14, Solution 32

Since Q>10,

2

B0

1 =ω −

2

B0

2 =ω +ω

=

ω2 6 0.025 6 025×10 6 rad / s

Chapter 14, Solution 33

pF 84.5610x40x10x6.5x2

80R

f2

QC

=

→

ω

=

H 21.1480x10x6.5x2

10x40Q

f2

RL

L

RQ

6

3 o

o

µ

=

→

ω

=

Chapter 14, Solution 34

10x60x10x

1LC

1

6 3

1RC

1B

Trang 24

1RR

=

→

ω

=

)40)(

10200(

80R

QCRC

=

→

)1010)(

104(

1C

1LLC

1

6 - 10

2 0

=

ω 200 2.5

2

B0

=+

=+ω

=

ω 200 2.5

2

B0

Chapter 14, Solution 36

s/rad5000LC

kS75.18j5.0L

4C4

jR

1)4(

Y

=

01875.0j0005.0

1)

4( 0

kS5.7j5.0L

2C2

jR

1)2(

Y

Trang 25

0075.0j0005.0

1)

2( 0

kS5.7j5.0C2

1L2jR

1)2(

0 0

Y

=

ω )2( 0

Z 8 85j 132 74

kS75.18j5.0C4

1L4jR

1)4(

0 0

Y

=

ω )4( 0

)C

1L(jRLRjCLLjCj

1R

)Cj

1R(Lj)Cj

1R//(

Lj

Z

ω

−ω+

ω+ω

=ω+ω

=

1)LCC

R(0

)C

1L(R

C

1LC

LLR)

Z

2 2

2

=+ω

→

−ω+

=

Thus,

2

2CRLC

1+

Chapter 14, Solution 38

2 2

R

LjRCjCjLjR

1Y

ω+

ω

−+ω

=ω+ω+

At resonance, Im(Y)=0, i.e

Trang 26

L

0 2

0

ω+

ω

−ω

C

LL

R 2 2

0

2 +ω =

2 3 - 6

3

2

-2

50)

1010)(

1040(

1L

RLC

=ω+ω

=

ω ( ) 2 (88)x10 1762

2 1 o

nF89.1910x2x10x8

1BR

1CRC

1C

1LLC

1

9 2

o 2

π

0

10x20x10x15

1LC

1

1.8257 k rad/sec

Trang 27

1RC

1B

C

2 1

2

+

C = and C1 = 20 µF, we then obtain C2 = 20 µF

Therefore, to increase the bandwidth, we merely add another 20 µF in series with the first one

Chapter 14, Solution 41

(a) This is a series RLC circuit

=+

4.0

1LC

L

=

=L

R

B 8 rad / s

(b) This is a parallel RLC circuit

F263

)6)(

3(F

6andF

+

→

µµ

F2

C= µ , R= k2 Ω, L=20mH

Trang 28

102(

1LC

1

3 - 6

=

)1020)(

105(

102L

R

3 0

102(

1RC

LjRC

j

1LjR

Cj

LjR

2

ω+

=ω+ω+ω

ω+

=

Z

2 2 2 2 2

2

in (1 LC) R C

)RCjLC1

)(

LjR(

ω+ω

ω

−ω

−ω+

=

Z

At resonance, Im(Zin)=0, i.e

CR)LC1

(L

0=ω −ω2 −ω 2

CRL

2 = −ω

=

LC

CR

L 2

R C

−(b) Zin = jωL||(R+1 jωC)

RCj)LC1

(

)RCj1(LjCj1LjR

)Cj1R(Lj

2

ω+ω

=ω+ω+

ω+ω

=

Z

2 2 2 2 2

2 2

]RCj)LC1

[(

)LjRLC-

ω+ω

ω

−ω

−ω+ω

=

Z

At resonance, Im(Zin)=0, i.e

LCR)LC1

(L

0=ω −ω2 +ω3 2 2

Trang 29

1

(c) Zin =R||(jωL+1 jωC)

RCj)LC1

(

)LC1

(RC

j1LjR

)Cj1Lj(R

ω+ω

=

Z

2 2 2 2 2

2 2

in (1 LC) R C

]RCj)LC1

)[(

LC1

(R

ω+ω

ω

−ω

−ω

(R

0= −ω2 ω

0LC

1−ω2 =

=

ω0

LC 1

ω

=

Cj

1R

||

LjR

LjR

2 1

1 in

Z

Trang 30

LjRCj

1R

Cj

1RLjR

LRj

1

1 2

2 1

1 in

ω+

ω+

ω+

⋅ω+

1

2 1

in (R j L)(1 j R C) LCR

)CRj1(LRj

ω

−ω

+ω+

ω+ω

=

Z

)CRRL(jLCRLCR

R

LRjLCRR-

2 1 2

2 1

2 1

1 2

1 2

ω+ω

=

Z

2 2 1 2

2 2

2 1

2 1

2 1 2

2 1

2 1 1 2

1 2

)]CRRL(jLCRLCR

R)[

LRjLCRR-

+ω+ω

−ω

−ω

−ω

−ω

=

Z

At resonance, Im(Zin)=0, i.e

)LCRLCR

R(LR)CRRL(LCRR

1

2 1 1 2

1 2

1 3 2

1 2 2 2

2 1

ω

=

LC1

CR

2

2 + −ωω

=

1)CRLC

0

CRLC

1

2 6 - 2

6 - 0

)109()1.0()109)(

02.0(

=

ω0 2 357 krad / s

(b) At , ω=ω0 =2.357krad/s

14.47j)1020)(

10357.2(jL

jω = × 3 × -3 =

0212.0j9996.014.47j1

14.47jLj

||

+

14.47j1.0)109)(

10357.2(j

11

.0Cj

1

×

×+

=ω+

)Cj1R(

||

)Lj

||

R()

Z

Trang 31

)14.47j1.0)(

0212.0j9996.0()( 0

−+

Z

=

ω )( 0in

1j

2j

31

ω++ω+ω

=

2

2C1

jCC-j0.5jC

1

jCj-j1.5

1

+

++

=+++

1

C-0.5

++

2

1C1

C1

2

2

Z Z

20)10)(

2

=

= I Z V

V)tsin(

20)t(

v = , i.e Vo = 20 V

Trang 32

Chapter 14, Solution 45

(a)

ω+

ω

j1

jj

||

ω+

=ω+

ω

=

1j

11

j1j

1

||

1Transform the current source gives the circuit below

ω

j 1

I j 1

j

ω+

ω+

ω

⋅ω+

ω+ω++

ω+

=

j1jj1

jj1

11

j11o

=

I

V

) j 1 ( 2

j

ω+ω

)j1(2

1)

1(

1)

1(

Chapter 14, Solution 46

(a) This is an RLC series circuit

nF26.1110

x10x)10x15x2(

1L

1CLC

1

3 2

3 o

2

π

Trang 33

Chapter 14, Solution 47

RLj1

1L

jR

R)

(

i

o

ω+

=ω+

1)0(

H = and H(∞)=0 showing that this circuit is a lowpass filter

At the corner frequency,

2

1)(

H ωc = , i.e

R

L1R

L1

12

2 c

L

R

c =ω

=

=

×

×

⋅π

=

⋅π

10102

1L

R2

1

Chapter 14, Solution 48

Cj

1

||

RLj

Cj

1

||

R)

(

ω+

CjRLj

Cj1R

CjR)

(

ω+

ω+

ω

ω+

j R

R

2

ω

−ω+1)

0

(

H = and H(∞)=0 showing that this circuit is a lowpass filter

Trang 34

Chapter 14, Solution 49

2

4)0

1)(

2 c1004

42

2

ω+

=

2.08

100

c = → ω =ω

+

10j1

220j2

4)2(H

+

=+

=

199.0101

2)2(

In dB, 20log10 H(2) = - 14.023

=

=-tan 10)

2(Harg -1 - 84.3°

Chapter 14, Solution 50

LjR

Lj)

(

i

o

ω+

0)

R1

12

1)

(

c 2

=

H

or c 2 fc

L

=

=

⋅π

=

⋅π

=

1.0

2002

1L

R2

1

Trang 35

Chapter 14, Solution 51

RC1j

jRC

j1

RCj)

(

ω

=ω+

ω

This has a unity passband gain, i.e H(∞)=1

50RC

1

c =ω

=

ω+

ω

j50

10j)(10)

ω

j 50

10 j

1 =2πf =20π×10

ω

3 2

2 =2πf =22π×10

ω

3 1

B=ω −ω = π×

3 1

2

2ω = π×

=

ω

Trang 36

C

1LLC

1

2 0

=

)1080()1021

(

1

L 3 2 -12 2 872 H

BLRL

R

B= → =

=

×π

=

→

=

10x300x10xx2

1C

f2

1RRC

1f2

12 3

c c

c

Chapter 14, Solution 56

s/krad10)104.0)(

1025(

1LC

1

6 3

10L

10

s/krad8.92.0102Bo

1 =ω − = − =

2

8.9

π

=f

s/krad2.102.0102Bo

2 =ω + = + =

2

2.10

1 < <

Trang 37

Chapter 14, Solution 57

(a) From Eq 14.54,

LC

1L

RssL

RsLC

ssRC1sRC

sC

1sLR

R)

s(

2 2

++

=+

+

=++

0

2 sB s

sB

ω++

(b) From Eq 14.56,

LC

1L

Rss

LC

1s

sC

1sLR

sC

1sL)

s(

2

2++

+

=++

+

=

H

=)s(

0 2

2 0 2

sB s

s

ω++

ω+

Chapter 14, Solution 58

(a) Consider the circuit below

R 1/sC

1RsC

1RsC

1R

||

sC

1R)s(

=

Z

Trang 38

sRC1R)

s

(

+

++

=

Z

)sRC2(sC

CRssRC31)

s

(

2 2 2+

++

sC2

sC

V I

I

2 2 2

s 1

)sRC2(sCsRC

2

RR

++

+

⋅+

=

V

2 2 2 s

o

CRssRC31

sRC)

s

(

++

=

=

V

V H

=

2 2

2

CR

1sRC

3s

sRC33

1)

3

B 3 rad / s

(b) Similarly,

sLR2

)sLR(RsL)sLR(

||

RsL)

s

(

+

++

=++

=

Z

sLR2

LssRL3R)

s

(

2 2 2

+

++

RsL

R2

V I

I

2 2 2

s 1

sLR2sL

R2

sLRsL

++

+

⋅+

=

V

Trang 39

2 2

2 2 2

s o

L

RsL

R3s

sL

R331

LssRL3R

sRL)

s(

++

R3

)1040)(

1.0(

1LC

1

12 -

3

1021.0

102L

R

25010

2

105.0B

=+ω

Trang 40

1sL

||

R)s(

++

=

Z

LCssRC1

)LCs1(R)s

2++

+

=

Z

LCRsRLCRsCsRRR

)LCs1(R

o

2 o o

2 o

i

o

+++

+

+

=+

=

=

Z

Z V

V H

LCssRC1

)LCs1(RR

2 o

o

++

=+

Z

LCssRC1

LCRsRLCRsCsRRR

2

2 o

2 o o

+++

RCjLC1

LCRR

LCRC

RRjR

2

2 o

2 o o

ω

−+ω

−ω

+

=

Z

2 2

2

2 o

2 o

2 o

)RCjLC1

)(

CRRjLCRLCR

RR(

ω+ω

ω

−ω

−ω

−ω

−+

=

Z

0)Im(Zin = implies that

0)LC1

(CRR]

LCRLCR

RR[RC

o

2 o

2

ω

Trang 41

LCRLCR

R

o

2 o

101(

1LC

1

6 - 3

LCRLCR

RCRR

j

R

)LC1

(R

2 o

2 o

o

2

ω

−ω

−+ω

R)

or

o o

o 2

o

2 max

RR

R)

RR(LCCRRjRR

LC

1Rlim

)(HH

+

=+

−ω

+ω+

R

)LC1

(R)

2 o

2 o

2 o

2 o

))RR(LCR

R()CRR

(

)LC1

)(

RR(2

1

−++ω

ω

−+

=

2 8 - 2

2 6 -

-9 2

)10410

()10

(96

)1041

(102

1

×

⋅ω

−+ω

×

×

⋅ω

=

2

1)10410

()10

(96

)1041

(10

0

2 8 - 2

2 6 -

-9 2

×

⋅ω

−+ω

×

×

⋅ω

=

0)10410

()1096()2)(

2 -6 2

()

10

96

( × -6ω 2 − −ω2 ⋅ × -8 2 =

010010

092.810

6

1 × -15ω4− × -7ω2 + =

Trang 42

101471.2

109109.2

Hence,

s/krad653.14

1 =ω

s/krad061.17

2 =ω

=

−ω

Cj1

V V

ω+

1

V

V

+

=

i

o)(

V

V H

RC j 1

1

ω+

Cj1R

R

V V

ω+

=

Since V+ = V−,

o iRCj1

RCj

V

V

=

i

o)(

V

V H

RC j 1

RC j

ω+ω

Trang 43

Chapter 14, Solution 62

This is a highpass filter

RCj1

1RC

j1

RCj)(

ω

=ω+

ω

H

ωω

cj1

1)

f1000j1

1f

fj1

1)

(

c = −

H

(a)

i

o5j1

1)Hz200f

mV120o

(b)

i

o5.0j1

1)

kHz2f

mV120o

(c)

i

o1.0j1

1)kHz10f

mV120o

Chapter 14, Solution 63

For an active highpass filter,

i i

f i

RsC1

RsC)

s(H

+

Trang 44

But

10/s1

s10)

s(H

RC

i f f

.0RC

i i i

i

Chapter 14, Solution 64

f f

f f

f

RC

j

1

||

RZ

ω+

=

i

i i i

i

CRj1Cj

1RZ

ω

ω+

=ω+

i

f i

o )

-(

Z

Z V

V H

) C R j 1 )(

C R j 1 (

C R j -

i i f

f

i f

ω+ω

+

ω

This is a bandpass filter H(ω) is similar to the product of the transfer function

of a lowpass filter and a highpass filter

Chapter 14, Solution 65

i

i 1 j RC

RCjC

j1R

R

V V

V

ω+

ω

=ω+

=+

o f i

iRR

R

V V

+

=

Since V+ = V−,

Trang 45

i o

f i

i

RCj1

RCjR

R

R

V V

ω+

ω

=+

=

i

o)(

RC j 1

RC j R

R 1

i f

It is evident that as ω→∞, the gain is

sR

R

R)

s(

2 4

3

4+

⋅+

=

H

(c) When R 3 →∞,

CR1s

CR1-)s(

2

1+

=

H

Chapter 14, Solution 67

f i i

4

1R

Rgain

s/rad)500(2CR

1frequency

Corner

f f

500)(

2(

1

×π

=Therefore, if Rf = 20 kΩ, then Ri = 80 kΩ and C=15 915 nF

Trang 46

Chapter 14, Solution 68

i f i

f

R5RR

R5gainfrequency

s/rad)200(2CR

1frequency

Corner

i i

200)(

2(

1

×π

=Therefore, if Ri = 20 kΩ, then Rf =100 kΩ and C=39 8 nF

Chapter 14, Solution 69

This is a highpass filter with fc = kHz 2

RC

1f

2 c

c = π =ω

3

c 4 10

1f

2

1RC

×π

1040001

C 7 96 nF

Trang 47

Chapter 14, Solution 70

(a)

)YYY(YYY

YY)

s(

)s()s(

3 2 1 4 2 1

2 1 i

o

+++

=

=

V

V H

H

) sC G G ( sC G G

G G

1 2 1 2 2 1

2 1

+++

GG

GG)0(H

2 1

K1L

f m

-6 f

101K

K

C

m f

6

K

1K

Substituting (1) into (2),

f f

6

K25

1K

10 =

=f

Trang 48

Chapter 14, Solution 72

CL

LCK

K

LCC

f 2

-3 2

)2)(

1(

)1020)(

104(

LKK

6 2

)104)(

2(

)1020)(

1(

800(

10300K

K

CC

-9 f

m

pF 375 0

10LK

=

nF110101K

K

C'

C

8 f

m

=

=

=

Trang 49

1K

K

C'

C

5 f

x50RK'

R

3

3 3

m

mH1010

10x10x10LH

10LK

K

CF

p40

'

f m

10B

RLL

R

B= → = = =

F5.312)2)(

1600(

1L

1CLC

1

2 0

CC

-4 m

F 5208

Trang 50

(b) ′= = 3 =

f 10

2K

400(LK

400(

10125.3KK

C

-4 f

m

pF 81 7

10LK

K

3 f

=

F1.0)10)(

10(

1K

K

C

f m

Trang 51

Also,

sC1sLsLsC

1sL

2

V V

V

Combining (2) and (3)

o o

1

sC1sL

2

o 1 4s LC

LCs

V V

+

Substituting (3) and (4) into (1) gives

1 2 o

1

LCs41

sCsL

R

1

V V

2 1

2

sRCLCs41LCs41

sRC

+

++

=+

+

=

sRCLCs41

LCs412

Trang 52

sRCR

o in

++

=

=

I Z

sC

1RsL4

in = + +

When R =5, L=2, C=0.1,

=)s(in

Z

s

10 5 s

At resonance,

C

1L40)Im( in

ω

−ω

1.0(2

1LC

10LK

KL

m

10)100)(

10(

1.0K

Z

s

10 50 s 8 0

4

++

=

=

)10)(

2.0(2

1LC

2

1

4 -

Trang 53

Chapter 14, Solution 80

(a) R′=KmR =(200)(2)=400Ω

mH2010

)1)(

200(K

LK

200(

5.0K

K

C

f m

.0sL

2 x 2

I V

V

=+

But, Ix =sC V1

Trang 54

5.0sL

2 1 2

V V

V

=+

(2) Solving (1) and (2),

1sCR5.0LCs

RsL2

RsL

1025.0)(

10j(5.0)1025.0)(

1020()10j(

400)1020)(

10j(

6 - 4

6 - 3

2

-4

3 - 4

.0j5.0

200j400

Z 632 5- 18 435°ohms

Chapter 14, Solution 81

(a)

1GR)LGRC(jLC

RLjZ

toleadswhich

LjR

1)LjR)(

CjG(LjR

1C

jGZ1

ω

=

ω+

+ω+ω

+

=ω++ω+

=

LC

1GRC

GL

Rj

LC

RC

j)

(Z

j2

)1j(1000)

(

++ω+ω

=

Trang 55

Comparing (1) and (2) shows that

LR1

R/LmF,

1C1000

C

1CG2

C

GL

R + = → = = mS

L4.0RR

10

1R10LC

1GR2501

4.0K

L'L

3 f

C'C

3

3 f

C

C′=

2001

110

1K

1C

Trang 56

Chapter 14, Solution 83

pF1.010x100

10CKK

1'CF

f m

5µ → =

=Ω

Trang 57

Chapter 14, Solution 85

We let Is =1∠0o A so that Vo/Is =Vo The schematic is shown below The circuit

is simulated for 100 < f < 10 kHz

Trang 58

Chapter 14, Solution 86

The schematic is shown below A current marker is inserted to measure I We set

Total Points = 101, start Frequency = 1, and End Frequency = 10 kHz in the

AC sweep box After simulation, the magnitude and phase plots are obtained in the Probe menu as shown below

Ngày đăng: 23/10/2013, 16:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN