We find VTh using the circuit in Fig.. 15 b We obtain ZTh from the circuit in Fig... 6Ωb We find VTh at the load terminals using Fig... From Fig.d, we obtain VTh using the voltage divisi
Trang 1Chapter 11, Solution 1
)t50cos(
160)
t
(
)9018030t50cos(
2)30t50sin(
20-
)t50cos(
)20)(
160()t(i)t(v)
t
(
[cos(100t 60 ) cos(60 )]W1600
)20)(
160(2
1)cos(
IV2
150jLjH
3
100j-)10)(
20)(
500(
j-C
j
1F
ω
→
µ
030
1 = ∠ ° = ∠− °=
I
)t500sin(
2.0)90t500cos(
2.0)t(
06.0j12.056.261342.0j2
3.0100j200
030
Trang 21342.0)t(
=I1 I2 0.12 j0.14 0.1844 -49.4
I
)35t500cos(
1844.0)t(
For the voltage source,
]35t500cos(
1844.0[]t500cos(
30[)t(i)t(v)t(
At , t =2s p=5.532cos(1000)cos(1000−35°)
)935.0)(
5624.0)(
532.5(
2.0[]t500cos(
30[)t(i)t(v)t(
At t =2s, p=6cos(1000)sin(1000)
)8269.0)(
5624.0)(
6(
)56.25t500cos(
1342.0[]44.63500cos(
42.13[)t(i)t(v)t(
At , t =2s p=18cos(1000−63.44°)cos(1000+26.56°)
)1329.0)(
991.0)(
18(
1342.0[]56.26t500cos(
84.26[)t(i)t(v)t(
At t =2s, p=3.602cos2(1000+25.56°)
21329.0)(
602.3(
p=
=
p 0 0636 W
Trang 3Chapter 11, Solution 3
10cos(2t+30°) → 10∠30°, ω=2
2jLjH
-j2Cj
1F
25
)2j2)(
2j()2j2(
°
∠
= 1.581 11.565
2j24
3010
2j
2j2
I
For the source,
)565.11-581.1)(
3010(2
1
= I V S
5.2j5.718.43905
=
S
The average power supplied by the source = 7 5 W
For the 4-Ω resistor, the average power absorbed is
1
For the inductor,
5j)2j()236.2(2
12
Trang 4For the 2-Ω resistor, the average power absorbed is
12
10j20(
2
1 j)j2(
For mesh 2,
1
2 j10)
10j5j10(
1
2 j2)
j2(
jj20
5
I I
4j
)j2(51 1
j10-2 2
1
I V S
Trang 5The average power supplied=43.65cos(12.1°)= 42 68 W
For the 20-Ω resistor,
6828.1P
38.256828.12j26j
)2j2(6j1
408I
2 1
−+
P3H = P0.25F = 0
W097.522
258.2P
258.238.256828.12j26j
6jI
2 2
=
Ω Ω
Trang 6)604(
Substituting (2) into (3),
0)604(8608)j2
j10
6040
608j-j10
60406042
°
∠
=+
j10
j14)608j(j10
6032j608j)2j4
°
∠
=+
)14j1)(
604(1
Trang 7Applying KVL to the left-hand side of the circuit,
o
o 0.14
20
Applying KCL to the right side of the circuit,
05j105j
−+
j10
10
V V
j
5j10
8∠ °= Vo +
j1
2080
o 1
V I
1R2
6 V1 V1−V2
+
At node 2,
Trang 8
o o
V I
But,
j20-
2 1 o
V V
=
Hence,
40j20
-)(
5
j6)-1(37
360j6
360j
940
1R2
1P
2 2
2
Chapter 11, Solution 9
rmsV8)2)(
4(V2
61
VP
2 o
The current through the 2 -kΩ resistor is
mA1k
Trang 9377(
= -37.02 6.375 -37.02 k
)754.0(1
k10Z
2 ab
mA)68t377cos(
2)22t377sin(
2)t(
2
2
102ZI
8j28
(8)(-j2)-j2
L Z
Z 0 471+j 1 882Ω
Trang 10We find VTh using the circuit in Fig (b)
2j-
j64-I
8(6864R
8P
2
L
2 Th max
V
W 99 15
(b) We obtain ZTh from the circuit in Fig (c)
)3j4)(
5(2j)3j4(
||
52j
−
−+
=
−+
=
Z
=
= * Th
L Z
Z 2 5−j 1 167Ω
Trang 11j100)(-j40)(80
j100)(80
=
Z
=
= * Th
L Z
Z 51 2+j 1 6Ω(b) We find VTh at the load terminals using Fig (b)
)203)(
8()203(40j100j80
=
I
6j8
)2024)(
40j(-40
8(
241040R
8P
2
L
2 Th max
V
W 5 22
Trang 12From Fig.(d), we obtain VTh using the voltage division principle
3j4)3010(3j9
3j4Th
8(3
10105R
8P
2
L
2 Th max
V
W 389 1
−
=+++
++
+
−
=
∗ 8.245 j2.3Z
Z
3.2j245.87.7j245.810j8j1624j10
)8j16)(
24j10(10jZ
Th Th
Trang 13V245
.8IP
V12.158j53.7166.6555.173
)8j16(40j8j1624j10
10)
8j16(V
2 2
2 Th 2
rms max
++
=+
2 o
j-j
V V V V
o 2
j-2
Substituting (1) into (2),
2 2
2 (2 j)(j) (1 j)j
j1
1
2 = −
V
5.0j5.02
j11
L Z
Z 0 5−j 0 5Ω
Trang 14We now obtain VTh from Fig (b)
12
o
V V
j1
12-
o = +
V
0)
2j
o − × V +V =
V
j1
)2j1)(
12(j2)
+
=+
8(2
512R
8P
2
L
2 Th max
V
W 90
Chapter 11, Solution 16
520/14
11
F20/1,4H
1
,
x j C j j
10<0o Vo -j5 j4 VTh
-
Trang 15At node 1,
2 1
2 1 1 1
425
.05
2
10
V j
V V
V V j
.004
j
V V V
V
+
−+
=
→
=+
j20 Ω
30 Ω
40 Ω -j10 Ω
(a)
10j40
-j10))(
40(20j30
)20j)(
30()10j-
||
4020j
Z
Ω+
Trang 16Using current division,
3.2j1.1-)5j(10j70
20j30
10j40
8(
5000R
8
P
L
2 Th max
V
W 96 53
Chapter 11, Solution 18
We find ZTh at terminals a-b as shown in the figure below
a b
(80)(-j10)20
j20-j10)(
||
8040
||
4020j
Z
154.10j23.21
Th = +
Z
=
= * Th
j)(6)(3-j2
)j3(
||
62j-
++
=++
=
Z
561.1j049.2
Trang 17To get VTh, let Z=6||(3+j)=2.049+ j0.439
By transforming the current sources, we obtain
756.1j196.8)04(
258.70R
8
P
L
2 Th max
V
W 409 3
Chapter 11, Solution 20
Combine j20 Ω and -j10 Ω to get
-j20-j10
1= V1 + V1 + V2
2
1 j4)
2j1(
1 2
1
V V V
Substituting (2) into (1),
2
2 j41.1)2j1(
=
Trang 18V Z
=
= ThL
2j1(
12
2 1
°
∠
=+
−
=
818.5j9091.0
82.21j09.1092
Th V V
=
=
=
)792.6)(
8(
)893.18(R8P
2
L
2 Th max
V
W 569 6
Trang 1910010j-
)30j40)(
100()30j40(
634.4j707.81
)634.4j707.31)(
50()634.4j707.31(
=
Z
73.1j5.19
Th = +
Z
=
= ThL
164
2sin2
16sin
16
1
0 0
8 =
=
rms
I
Trang 201
2 2 2
0 2 2
1t0,5)t(v
2
25dt-5)(dt52
1
1 2 1
0 2 2
32f
3
32]16016
[
3
1
dt4dt0dt)4(3
1dt)t(fT
1f
rms
3
2 1
=
++
−
=
Trang 214
1dt)10(dt54
1
2 2 2
0 2 2
1253
t5
1dtt5
1
0
3 5
0 2 2
0 2 2
rms (4t) dt 0 dt
5
1V
533.8)8(15
163
t165
1
0
3 2
V
P
2 rms 4 267 W
Trang 22t(i
15
2 15
5
2 2
eff (20 2t) dt (-40 2t) dt20
1I
5
2 2
eff (100 20t t )dt (t 40t 400)dt5
1I
3 15 5
3 2 2
3
t3
tt10t1005
1I
332.33]33.8333.83[5
1
I2
=eff
2t0t)
1dt-1)(dtt4
1
2 2 2
0 2 2
42
1)
4()
2(2
1)(2
12 0
=
= ∫v t dt ∫ t dt ∫ dt
V rms
V944.2
=
rms
V
Trang 232 2 2
rms (10t ) dt 0dt
2
1I
105
t50dtt50
0
5 1
0 4 2
2t1t1020
1t010)
t
(
i
[ 10 dt (20 10t) dt 0]3
1
1
2 1
0 2 2
33.133)31)(
100(100dt)tt44(100100I
1
2 2
Chapter 11, Solution 34
472.420f
20363
t9
3
1
dt6dt)t3(3
1dt)t(fT
1f
rms
2 0 3
Trang 24Chapter 11, Solution 35
5 2 5
4 2 4
2 2 2
1 2 1
0 2 2
rms 10 dt 20 dt 30 dt 20 dt 10 dt
6
1V
67.466]1004001800400100[6
34
2 2
6)10sin(
483 2
i
A487.9902
362
1664
3 2
50)(
2(jLjH
5
08.157j30jX
=
Z
Trang 25)210
Apparent power = = =
160
)210
)19.79cos(
36
08.157tancoscos
)8j12)(
4j()8j12(
||
4j
4.0)6667.0j4.1(V60j92.103
50
VV30j
V20
V
30
120
2 1
2 1 1 1
o
−
−
=+
→
−+
2 2
2
4010
V V
V
V
++
Trang 26(a) P j30Ω =0=P−j40Ω
W665.820/3.173
|
|2
2 2
R
V R
V
W6.034100/1.4603
|
|2
2 1
R
V V P
W86.8740/3514
|30120
|2
|
|,
3.1065
.1422
||
-j2)2j5j(
||
2j
)j4)(
2j()j4(
°
∠
=+
+
=
−+
44.0j64.1
44.0j64.0)j52.1j64.0(
Trang 27Chapter 11, Solution 42
°
=θ
→
θ
=
=0.86 cos 30.683
pf
kVA798.9)683.30sin(
5sin
QSsin
S
°
=θ
=
→
θ
925
3 2
Trang 28Chapter 11, Solution 45
2
6020
2 2
Reactive power =55 VAR
pf is leading because current leads voltage
Reactive power =401 2 VAR
pf is lagging because current lags voltage
Reactive power =74 54 VAR
pf is lagging because current lags voltage
Trang 29Reactive power =- 961 7 VAR
pf is leading because current leads voltage
Average power =112 W Reactive power =194 VAR
)80( 2
Trang 30Chapter 11, Solution 48
(a) S=P− jQ= 269−j 150 V A
(b) pf =cosθ=0.9 → θ=25.84°
31.4588)
84.25sin(
2000sin
QSsin
S
°
=θ
=
→
θ
=
48.4129cos
Qsinsin
S
59.48
=
86.396)6614.0)(
600(cosS
2 2
=
=
=
Z V
8264.01210
1000S
Pcoscos
4j
Trang 31(b) 0.8 cos sin 0.6
2
6.1S
P
=θ
=V I S
1440060
j40
)120
1000j1000jQ
=
S
750j
Z
V
S=
23.23j98.30750j1000
)220
2 rms
2(
)120(2
2 2
2 rms
*
S
V S
V Z
Trang 32Chapter 11, Solution 51
(a) ZT =2+(10−j5)||(8+j6)
j18
20j1102j
18
)6j8)(
5j10(2
++
=+
+
−+
2(
)16(2
SS
S
500j1000
S
2749j12009165
.0x3000j4.0x3000
S
1500j20006
.08.0
2000j2000
S
C B A
=
7494200
4200pf
749j4200I
IV
Irms = 35.55∠–55.11˚ A
Trang 33Chapter 11, Solution 53
S = SA + SB + SC = 4000(0.8–j0.6) + 2400(0.6+j0.8) + 1000 + j500 = 5640 + j20 = 5640∠0.2˚
(a)
A8.2997.9388.2946.66x2I
8.2946.662
30120
2.05640V
SV
SSV
SI
rms rms
C A rms
B rms
1000j1000jQ
=
S
750j
Z
V
S=
23.23j98.30750j1000
)220
2 rms
2(
)120(2
2 2
2 rms
*
S
V S
V Z
Trang 34For mesh 2, -j50=(20+j10 I2 −20I1
2
1 (2 j II
-2j5
Ij22-
1-j1j5-2
3j4
5j1-
I2 2
°
∠
=+
=
−
−+
=
−
=I I (3.5 j0.5) (2 j3) 1.5 j3.5 3.808 66.8
I3 1 2For the 40-V source,
- * 1
I V
=
= * (j50)(2 j3)2
I V
Trang 35Chapter 11, Solution 56
8.1j6.02j6
)2j-)(
6(6
||
2j
−
=
j2.23.66
||
-j2)(4j
+
= (2 30 ) 0.95 47.08
2.2j6.8
2.2j6.3o
)30-)(247.0875
.4(2
12
s
= V I S
Trang 36o j4)
4j5(
At node 1,
2j
2j-
1 o 1
V V V
=+
j411
24-
o = +
j411
j4)-(-24)(2
1 = +
V
The voltage across the dependent source is
o 1 o 1
2 V (2)(2V ) V 4V
4j11
)4j6)(
24-)44j2(j411
24-
−
=+
−
⋅+
=
V
)2(2
12
o 2
576j4
11
-24-4j11
)4j6)(
24-
2.0
o = =
I
mA8
20Io =
Trang 37From the right portion of the circuit,
mAj7
16)mA8(3jj104
4
I
)1010(50
)1016(
2 -3 2
= I S
=
S 51 2 mVA Chapter 11, Solution 59
Consider the circuit below
240
++
=
−
o)38.0j36.0(
°
∠
=+
38.0j36.0
88o
-o 1
V I
°
∠
=+
= 3.363 -83.42
30j40
o 2
V I
Reactive power in the inductor is
L
2
2 Z I
c
2
1 Z I
Trang 38Chapter 11, Solution 60
15j20))8.0(sin(cos8
.0
20j20
749.7j16))9.0(sin(cos9
.0
16j16
=+
oI 6VV
2 = −
S
kVA937.1j4))9.0(sin(cos9
.0
4j
4 2
1
I V
S =
Trang 39100
10)137.1j2.5)(
2(
=
=
V
S I
104j74.22
2 = +
I
Similarly, sin(cos (0.707)) 2 j2kVA
707.0
2j
1 2
1
I V
S =
40j40-100
j
10)4j4(V
=+
= 1 2 -17.26 j144 145 96.83
o I I I
* o o
o V I2
1
=
S
VA)96.83-145)(
90100(2
1
S
=o
Trang 40.0
15j
2 V I
S =
120
25.11j15
2
2
* 2
09375.0j125.0
2 = +
I
)15.0j3.0(
2 2
1 =V +I +
V
)15.0j3.0)(
09375.0j125.0(120
V
0469.0j02.120
V
843.4j10))9.0(sin(cos9
.0
10j
84.25111.11
0405.0j0837.025.82-093.0
I
053.0j2087.0
s =V +I +
V
)04.0j2.0)(
053.0j2087.0()0469.0j02.120(
V
0658.0j06.120
V
=s
V 120 06∠0 03°V
Chapter 11, Solution 63
Let S=S1+S2 +S3
929.6j12))866.0(sin(cos866
.0
12j
S
916.9j16))85.0(sin(cos85
.0
16j
S
Trang 41)6.0)(
20(1 -
S
* o2
1987.22j
110
98.22j442
* o
=o
or
333.3j83.20120
400j2500V
SI
VI
923.6j615.412j8
120I
2
2 2
Trang 42
1010
j-C
j
1nF
1
At the noninverting terminal,
j1
4j100
100
-04
o o
V
)45t10cos(
2
4)t(
W1050
12
12
4R
V
2 2
j4)(2
s i
mAj3)j2)(4-(6
)45j4)(4(2
mA2j6
-o
°
∠+
-2 2
540
4202
1R2
Trang 43Chapter 11, Solution 67
51.02
11
F1.0,6H
3,
x j C j j
ω
42510
50)
Z
j
j j
68
2052.05638.06
8
0206.0
+
+
=+
−
∠
=
mVA86
.3618mVA8.104.14)87.1606.0)(
203.0(2
j
j Z
V I V Z
Z
7.990224.0)206.0()68(12
)42(,
3 1
|
|2
Trang 44o R R
S
LI2
1j0jQ
o L
1j0jQ
o c
−ω+
C
1 L j R I 2
=θ
= cos
)12j10)(
2(
)120(2
The average power absorbed =P=Re(S)= 295 1 W
(c) For unity power factor, θ1 =0°
09.354
, which implies that the reactive power due
to the capacitor is Qc =
2
1X2
VQ
c
2
c = = ω
=π
=ω
)120)(
60)(
2(
)09.354)(
2(V
Q2
Trang 45Chapter 11, Solution 70
6.0sin8
.0cos
528)6.0)(
880(sinS
If the power factor is to be unity, the reactive power due to the capacitor is
VAR528Q
Qc = =
c
2 rms
V
Q2CV
C2
1X
VQ
ω
=
→
ω
=
=
=π
)220)(
50)(
2(
)528)(
2(
Chapter 11, Solution 71
67.666.0
508.08.0,
6.0,
50,
065.1067071.0
2 2
1
P
5067.66,
065.106065
98.176.18106.56735.1722
S
058.56)098.17(tan735.172)tan
058.56
Q C
rms c
)tan(tan
P
Qc = θ1− θ2
kVAR]
84.25tan(
)54.40tan(
)[
40(
kVAR84
.14
Qc =
=π
=ω
rms
c
)120)(
60)(
2(
14840V
Q
Trang 46(b) θ1 =40.54°, θ2 =0°
kVAR21.34kVAR]
0)54.40tan(
)[
40(
=π
60)(
2(
34210V
V S
1 , θ =cos-1(0.96)=16.26°
2
]tan(16.26-
35tan(
[10]tantan
[P
=c
Q 4 083 kVAR
=π
=ω
rms
c
)240)(
60)(
2(
4083V
Q
(d) S2 =P2 +jQ2, P2 =P1 =10kW
kVAR917
.2083.47QQ
Q2 = 1− c = − =
kVA917.2j10
2
* 2
Trang 47Chapter 11, Solution 74
(a) θ =cos-1(0.8)=36.87°
1
kVA308.0
24cos
PS
)6.0)(
30(sinS
kVA18j24
kVA105.4295.0
40cos
PS
.13sin
S
kVA144.13j40
2 = +
S
kVA144.31j64
=θ
= cos
(b) θ2 =25.95°, θ1 =0°
kVAR144
.31]0)95.25tan(
[64]tantan
[P
=π
=ω
rms
c
)120)(
60)(
2(
144,31V
Q
Trang 48Chapter 11, Solution 75
5j8
576050
j80
)240
* 1
2
+
=+
=
=
Z
V S
VA91.208j13.3587j12
576070
j120
)240
)240
S
=++
68.114tan- 1
=θ
= cos
(c) Qc =P[tanθ2 −tanθ1]=18.35.88[tan(3.574°)−0]
VAR68.114
Qc =
=π
=ω
rms
c
)240)(
50)(
2(
68.114V
8j23j4
1230
3 Vo = Vo + Vo
−
−+
°
∠
Trang 49∠
=+
52.23j14.36o
V
)30-3)(
19.86347.11(2
12
o
= V I S
8jLjH
-j5Cj
1F
1
(15)(-j5)-j5)
)5.4j5.1()8j6(
120
I
)5.4j5.1()5.14(2
12
12
Trang 50-j3Cj
1F
12
1
=ω
)3j-)(
4(4j53j-
||
44j5
−++
=+
+
=
Z
08.2j44
08.2j44.16
20
I
)08.2j44.6()207.1(2
12
Trang 51x500x100j
1C
j
1F
500,j
10x10x100jmH
2 1 2 1 2
1 2 1 o
1
V)40j6(V)40j
)VV(320
VVj
VVI
−
=
−+
−+
2 2 1
1,
4141.08443.040
j VI
S j
110
Z V
Trang 52(b) 1890.625
4.6
)110
°
=θ
≅
=θ
=Scos 1559.76
Chapter 11, Solution 81
kWh consumed =4017−3246=771kWh
The electricity bill is calculated as follows :
(a) Fixed charge = $12 (b) First 100 kWh at $0.16 per kWh = $16 (c) Next 200 kWh at $0.10 per kWh = $20 (d) The remaining energy (771 – 300) = 471 kWh
,30,
600,2482.0000,
S= 1+ 2 = 1+ 2 + 1+ 2 = +
AkV22.34
|S
|
S= =(b) Q = 17.171 kVAR
220,34
600,
[tan(cos 0.865) tan(cos 0.9)] 2833VAR600
,29
)tan(tan
PQ
1 1
2 1
Q C
rms c
Trang 53Chapter 11, Solution 83
(a) S VI (210 60o)(8 25o) 840 35o
2
12
W1.68835
cos840
,1
000,120
$
3 0 10 per kWh Chapter 11, Solution 85
(a) 15mH → j2πx60x15x10− 3 = j5.655
We apply mesh analysis as shown below
I1
+
Trang 5460)
120(2
* Th
)104)(
1012.4)(
2(j75Lj
Z
Ω+
80R
V I
V
2 2
2 2 2
2 2 2
)6.1()3(RX
5377.2tanR
Xtan- 1 - 1
=θ
= cos
Trang 55kVAR51.7))78.0(sin(cos12
sinS
=+
=P jQ
S 9 36+j 7 51 kVA
2 2
*
*
2
10)51.7j36.9(
)210(
×+
V S
kVA94.2352cos
PS
.1239sin
S
Additional load :
kW300
kVA375cos
PS
sinS
Trang 56Total load :
jQP)QQ(j)PP
2000
kVAR5
.1464225
5.1239
The minimum operating pf for a 2300 kW load and not exceeding the kVA rating of the generator is
9775.094.2352
2300S
Pcos
1
=
=
=θ
or θ=12.177°
The maximum load kVAR for this condition is
)177.12sin(
94.2352sin
S
kVAR313
.496
=
)15)(
220(
2700S
Pcos
3.1897)
09.35sin(
)15(220sin
S
When the power is raised to unity pf, θ1 =0° and Qc =Q=1897.3
=π
=ω
rms
c
)220)(
60)(
2(
3.1897V
Q
Trang 57Chapter 11, Solution 92
(a) Apparent power drawn by the motor is
kVA8075.0
60cos
.52)60()80(PS
Total real power
kW8020060PPP
P= m + c+ L = + + =
Total reactive power
=+
−
=++
=Q Q Q 52.915 20 0
Total apparent power
=+
= P2 Q2
51.86
80S
7285.3pf
P
kVAR796
.2))8.0(sin(cosS
1
kVA796.2j7285.3
S
kW2.1
kVA0j2.1
2 = +
S
kW2.1)120)(
10(
kVA0j2.1
3 = +
S
Trang 58.1
kVA2sin
QS
2(cosS
kVA6.1j2.1
4 = −
S
4 3 2
1 S S S S
kVA196.1j3285
=
S
Total real power = 7 3285 kW
Total reactive power = 1 196 kVAR
196.1tan- 1
=θ
1
kW700cos
S
kVAR14
.714sin
P2 = 1 =
kVA84.73695.0
700cos
PS
.230sin
S
Trang 59Q
Cost of installing capacitors=$30×484.06=$ 14 , 521 80
(b) Substation capacity released =S1−S2
kVA16.26384.736
(c) Yes, because (a) is greater than (b) Additional system capacity obtained
by using capacitors costs only 46% as much as new substation and distribution facilities
* s
L = Z → R =R , X =X
Z
LC
1X
Trang 60×
×π
=π
=
)1040)(
1080(2
1LC
2
1f
9 - 3
- 2 814 kHz
)10)(
4(
)6.4(R4
VP
=40 j8
ZTh
=
= * Th
L Z
)40)(
8(
)146(R
8
VP
2
Th
2 Th
W 61 66
Chapter 11, Solution 97
Ω+
=+++
=(2)(0.1 j) (100 j20) 100.2 j22
ZT
22j2.100
240Z
=
=
)22()2.100(
)240)(
100(I
100R
I