1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải phần giải mạch P11

60 183 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài giải phần giải mạch P11
Trường học University of Engineering and Technology
Chuyên ngành Electrical Engineering
Thể loại bài giải
Thành phố Hà Nội
Định dạng
Số trang 60
Dung lượng 1,98 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

We find VTh using the circuit in Fig.. 15 b We obtain ZTh from the circuit in Fig... 6Ωb We find VTh at the load terminals using Fig... From Fig.d, we obtain VTh using the voltage divisi

Trang 1

Chapter 11, Solution 1

)t50cos(

160)

t

(

)9018030t50cos(

2)30t50sin(

20-

)t50cos(

)20)(

160()t(i)t(v)

t

(

[cos(100t 60 ) cos(60 )]W1600

)20)(

160(2

1)cos(

IV2

150jLjH

3

100j-)10)(

20)(

500(

j-C

j

1F

ω

→

µ

030

1 = ∠ ° = ∠− °=

I

)t500sin(

2.0)90t500cos(

2.0)t(

06.0j12.056.261342.0j2

3.0100j200

030

Trang 2

1342.0)t(

=I1 I2 0.12 j0.14 0.1844 -49.4

I

)35t500cos(

1844.0)t(

For the voltage source,

]35t500cos(

1844.0[]t500cos(

30[)t(i)t(v)t(

At , t =2s p=5.532cos(1000)cos(1000−35°)

)935.0)(

5624.0)(

532.5(

2.0[]t500cos(

30[)t(i)t(v)t(

At t =2s, p=6cos(1000)sin(1000)

)8269.0)(

5624.0)(

6(

)56.25t500cos(

1342.0[]44.63500cos(

42.13[)t(i)t(v)t(

At , t =2s p=18cos(1000−63.44°)cos(1000+26.56°)

)1329.0)(

991.0)(

18(

1342.0[]56.26t500cos(

84.26[)t(i)t(v)t(

At t =2s, p=3.602cos2(1000+25.56°)

21329.0)(

602.3(

p=

=

p 0 0636 W

Trang 3

Chapter 11, Solution 3

10cos(2t+30°) → 10∠30°, ω=2

2jLjH

-j2Cj

1F

25

)2j2)(

2j()2j2(

°

= 1.581 11.565

2j24

3010

2j

2j2

I

For the source,

)565.11-581.1)(

3010(2

1

= I V S

5.2j5.718.43905

=

S

The average power supplied by the source = 7 5 W

For the 4-Ω resistor, the average power absorbed is

1

For the inductor,

5j)2j()236.2(2

12

Trang 4

For the 2-Ω resistor, the average power absorbed is

12

10j20(

2

1 j)j2(

For mesh 2,

1

2 j10)

10j5j10(

1

2 j2)

j2(

jj20

5

I I

4j

)j2(51 1

j10-2 2

1

I V S

Trang 5

The average power supplied=43.65cos(12.1°)= 42 68 W

For the 20-Ω resistor,

6828.1P

38.256828.12j26j

)2j2(6j1

408I

2 1

−+

P3H = P0.25F = 0

W097.522

258.2P

258.238.256828.12j26j

6jI

2 2

=

Ω Ω

Trang 6

)604(

Substituting (2) into (3),

0)604(8608)j2

j10

6040

608j-j10

60406042

°

=+

j10

j14)608j(j10

6032j608j)2j4

°

=+

)14j1)(

604(1

Trang 7

Applying KVL to the left-hand side of the circuit,

o

o 0.14

20

Applying KCL to the right side of the circuit,

05j105j

−+

j10

10

V V

j

5j10

8∠ °= Vo +

j1

2080

o 1

V I

1R2

6 V1 V1−V2

+

At node 2,

Trang 8

o o

V I

But,

j20-

2 1 o

V V

=

Hence,

40j20

-)(

5

j6)-1(37

360j6

360j

940

1R2

1P

2 2

2

Chapter 11, Solution 9

rmsV8)2)(

4(V2

61

VP

2 o

The current through the 2 -kΩ resistor is

mA1k

Trang 9

377(

= -37.02 6.375 -37.02 k

)754.0(1

k10Z

2 ab

mA)68t377cos(

2)22t377sin(

2)t(

2

2

102ZI

8j28

(8)(-j2)-j2

L Z

Z 0 471+j 1 882

Trang 10

We find VTh using the circuit in Fig (b)

2j-

j64-I

8(6864R

8P

2

L

2 Th max

V

W 99 15

(b) We obtain ZTh from the circuit in Fig (c)

)3j4)(

5(2j)3j4(

||

52j

−+

=

−+

=

Z

=

= * Th

L Z

Z 2 5j 1 167

Trang 11

j100)(-j40)(80

j100)(80

=

Z

=

= * Th

L Z

Z 51 2+j 1 6Ω(b) We find VTh at the load terminals using Fig (b)

)203)(

8()203(40j100j80

=

I

6j8

)2024)(

40j(-40

8(

241040R

8P

2

L

2 Th max

V

W 5 22

Trang 12

From Fig.(d), we obtain VTh using the voltage division principle

3j4)3010(3j9

3j4Th

8(3

10105R

8P

2

L

2 Th max

V

W 389 1

=+++

++

+

=

∗ 8.245 j2.3Z

Z

3.2j245.87.7j245.810j8j1624j10

)8j16)(

24j10(10jZ

Th Th

Trang 13

V245

.8IP

V12.158j53.7166.6555.173

)8j16(40j8j1624j10

10)

8j16(V

2 2

2 Th 2

rms max

++

=+

2 o

j-j

V V V V

o 2

j-2

Substituting (1) into (2),

2 2

2 (2 j)(j) (1 j)j

j1

1

2 = −

V

5.0j5.02

j11

L Z

Z 0 5j 0 5

Trang 14

We now obtain VTh from Fig (b)

12

o

V V

j1

12-

o = +

V

0)

2j

o − × V +V =

V

j1

)2j1)(

12(j2)

+

=+

8(2

512R

8P

2

L

2 Th max

V

W 90

Chapter 11, Solution 16

520/14

11

F20/1,4H

1

,

x j C j j

10<0o Vo -j5 j4 VTh

-

Trang 15

At node 1,

2 1

2 1 1 1

425

.05

2

10

V j

V V

V V j

.004

j

V V V

V

+

−+

=

→

=+

j20 Ω

30 Ω

40 Ω -j10 Ω

(a)

10j40

-j10))(

40(20j30

)20j)(

30()10j-

||

4020j

Z

Ω+

Trang 16

Using current division,

3.2j1.1-)5j(10j70

20j30

10j40

8(

5000R

8

P

L

2 Th max

V

W 96 53

Chapter 11, Solution 18

We find ZTh at terminals a-b as shown in the figure below

a b

(80)(-j10)20

j20-j10)(

||

8040

||

4020j

Z

154.10j23.21

Th = +

Z

=

= * Th

j)(6)(3-j2

)j3(

||

62j-

++

=++

=

Z

561.1j049.2

Trang 17

To get VTh, let Z=6||(3+j)=2.049+ j0.439

By transforming the current sources, we obtain

756.1j196.8)04(

258.70R

8

P

L

2 Th max

V

W 409 3

Chapter 11, Solution 20

Combine j20 Ω and -j10 Ω to get

-j20-j10

1= V1 + V1 + V2

2

1 j4)

2j1(

1 2

1

V V V

Substituting (2) into (1),

2

2 j41.1)2j1(

=

Trang 18

V Z

=

= ThL

2j1(

12

2 1

°

=+

=

818.5j9091.0

82.21j09.1092

Th V V

=

=

=

)792.6)(

8(

)893.18(R8P

2

L

2 Th max

V

W 569 6

Trang 19

10010j-

)30j40)(

100()30j40(

634.4j707.81

)634.4j707.31)(

50()634.4j707.31(

=

Z

73.1j5.19

Th = +

Z

=

= ThL

164

2sin2

16sin

16

1

0 0

8 =

=

rms

I

Trang 20

1

2 2 2

0 2 2

1t0,5)t(v

2

25dt-5)(dt52

1

1 2 1

0 2 2

32f

3

32]16016

[

3

1

dt4dt0dt)4(3

1dt)t(fT

1f

rms

3

2 1

=

++

=

Trang 21

4

1dt)10(dt54

1

2 2 2

0 2 2

1253

t5

1dtt5

1

0

3 5

0 2 2

0 2 2

rms (4t) dt 0 dt

5

1V

533.8)8(15

163

t165

1

0

3 2

V

P

2 rms 4 267 W

Trang 22

t(i

15

2 15

5

2 2

eff (20 2t) dt (-40 2t) dt20

1I

5

2 2

eff (100 20t t )dt (t 40t 400)dt5

1I

3 15 5

3 2 2

3

t3

tt10t1005

1I

332.33]33.8333.83[5

1

I2

=eff

2t0t)

1dt-1)(dtt4

1

2 2 2

0 2 2

42

1)

4()

2(2

1)(2

12 0

=

= ∫v t dtt dtdt

V rms

V944.2

=

rms

V

Trang 23

2 2 2

rms (10t ) dt 0dt

2

1I

105

t50dtt50

0

5 1

0 4 2

2t1t1020

1t010)

t

(

i

[ 10 dt (20 10t) dt 0]3

1

1

2 1

0 2 2

33.133)31)(

100(100dt)tt44(100100I

1

2 2

Chapter 11, Solution 34

472.420f

20363

t9

3

1

dt6dt)t3(3

1dt)t(fT

1f

rms

2 0 3

Trang 24

Chapter 11, Solution 35

5 2 5

4 2 4

2 2 2

1 2 1

0 2 2

rms 10 dt 20 dt 30 dt 20 dt 10 dt

6

1V

67.466]1004001800400100[6

34

2 2

6)10sin(

483 2

i

A487.9902

362

1664

3 2

50)(

2(jLjH

5

08.157j30jX

=

Z

Trang 25

)210

Apparent power = = =

160

)210

)19.79cos(

36

08.157tancoscos

)8j12)(

4j()8j12(

||

4j

4.0)6667.0j4.1(V60j92.103

50

VV30j

V20

V

30

120

2 1

2 1 1 1

o

=+

→

−+

2 2

2

4010

V V

V

V

++

Trang 26

(a) P j30Ω =0=Pj40Ω

W665.820/3.173

|

|2

2 2

R

V R

V

W6.034100/1.4603

|

|2

2 1

R

V V P

W86.8740/3514

|30120

|2

|

|,

3.1065

.1422

||

-j2)2j5j(

||

2j

)j4)(

2j()j4(

°

=+

+

=

−+

44.0j64.1

44.0j64.0)j52.1j64.0(

Trang 27

Chapter 11, Solution 42

°

→

θ

=

=0.86 cos 30.683

pf

kVA798.9)683.30sin(

5sin

QSsin

S

°

=

→

θ

925

3 2

Trang 28

Chapter 11, Solution 45

2

6020

2 2

Reactive power =55 VAR

pf is leading because current leads voltage

Reactive power =401 2 VAR

pf is lagging because current lags voltage

Reactive power =74 54 VAR

pf is lagging because current lags voltage

Trang 29

Reactive power =- 961 7 VAR

pf is leading because current leads voltage

Average power =112 W Reactive power =194 VAR

)80( 2

Trang 30

Chapter 11, Solution 48

(a) S=P− jQ= 269j 150 V A

(b) pf =cosθ=0.9 → θ=25.84°

31.4588)

84.25sin(

2000sin

QSsin

S

°

=

→

θ

=

48.4129cos

Qsinsin

S

59.48

=

86.396)6614.0)(

600(cosS

2 2

=

=

=

Z V

8264.01210

1000S

Pcoscos

4j

Trang 31

(b) 0.8 cos sin 0.6

2

6.1S

P

=V I S

1440060

j40

)120

1000j1000jQ

=

S

750j

Z

V

S=

23.23j98.30750j1000

)220

2 rms

2(

)120(2

2 2

2 rms

*

S

V S

V Z

Trang 32

Chapter 11, Solution 51

(a) ZT =2+(10−j5)||(8+j6)

j18

20j1102j

18

)6j8)(

5j10(2

++

=+

+

−+

2(

)16(2

SS

S

500j1000

S

2749j12009165

.0x3000j4.0x3000

S

1500j20006

.08.0

2000j2000

S

C B A

=

7494200

4200pf

749j4200I

IV

Irms = 35.55∠–55.11˚ A

Trang 33

Chapter 11, Solution 53

S = SA + SB + SC = 4000(0.8–j0.6) + 2400(0.6+j0.8) + 1000 + j500 = 5640 + j20 = 5640∠0.2˚

(a)

A8.2997.9388.2946.66x2I

8.2946.662

30120

2.05640V

SV

SSV

SI

rms rms

C A rms

B rms

1000j1000jQ

=

S

750j

Z

V

S=

23.23j98.30750j1000

)220

2 rms

2(

)120(2

2 2

2 rms

*

S

V S

V Z

Trang 34

For mesh 2, -j50=(20+j10 I2 −20I1

2

1 (2 j II

-2j5

Ij22-

1-j1j5-2

3j4

5j1-

I2 2

°

=+

=

−+

=

=I I (3.5 j0.5) (2 j3) 1.5 j3.5 3.808 66.8

I3 1 2For the 40-V source,

- * 1

I V

=

= * (j50)(2 j3)2

I V

Trang 35

Chapter 11, Solution 56

8.1j6.02j6

)2j-)(

6(6

||

2j

=

j2.23.66

||

-j2)(4j

+

= (2 30 ) 0.95 47.08

2.2j6.8

2.2j6.3o

)30-)(247.0875

.4(2

12

s

= V I S

Trang 36

o j4)

4j5(

At node 1,

2j

2j-

1 o 1

V V V

=+

j411

24-

o = +

j411

j4)-(-24)(2

1 = +

V

The voltage across the dependent source is

o 1 o 1

2 V (2)(2V ) V 4V

4j11

)4j6)(

24-)44j2(j411

24-

=+

⋅+

=

V

)2(2

12

o 2

576j4

11

-24-4j11

)4j6)(

24-

2.0

o = =

I

mA8

20Io =

Trang 37

From the right portion of the circuit,

mAj7

16)mA8(3jj104

4

I

)1010(50

)1016(

2 -3 2

= I S

=

S 51 2 mVA Chapter 11, Solution 59

Consider the circuit below

240

++

=

o)38.0j36.0(

°

=+

38.0j36.0

88o

-o 1

V I

°

=+

= 3.363 -83.42

30j40

o 2

V I

Reactive power in the inductor is

L

2

2 Z I

c

2

1 Z I

Trang 38

Chapter 11, Solution 60

15j20))8.0(sin(cos8

.0

20j20

749.7j16))9.0(sin(cos9

.0

16j16

=+

oI 6VV

2 = −

S

kVA937.1j4))9.0(sin(cos9

.0

4j

4 2

1

I V

S =

Trang 39

100

10)137.1j2.5)(

2(

=

=

V

S I

104j74.22

2 = +

I

Similarly, sin(cos (0.707)) 2 j2kVA

707.0

2j

1 2

1

I V

S =

40j40-100

j

10)4j4(V

=+

= 1 2 -17.26 j144 145 96.83

o I I I

* o o

o V I2

1

=

S

VA)96.83-145)(

90100(2

1

S

=o

Trang 40

.0

15j

2 V I

S =

120

25.11j15

2

2

* 2

09375.0j125.0

2 = +

I

)15.0j3.0(

2 2

1 =V +I +

V

)15.0j3.0)(

09375.0j125.0(120

V

0469.0j02.120

V

843.4j10))9.0(sin(cos9

.0

10j

84.25111.11

0405.0j0837.025.82-093.0

I

053.0j2087.0

s =V +I +

V

)04.0j2.0)(

053.0j2087.0()0469.0j02.120(

V

0658.0j06.120

V

=s

V 120 060 03°V

Chapter 11, Solution 63

Let S=S1+S2 +S3

929.6j12))866.0(sin(cos866

.0

12j

S

916.9j16))85.0(sin(cos85

.0

16j

S

Trang 41

)6.0)(

20(1 -

S

* o2

1987.22j

110

98.22j442

* o

=o

or

333.3j83.20120

400j2500V

SI

VI

923.6j615.412j8

120I

2

2 2

Trang 42

1010

j-C

j

1nF

1

At the noninverting terminal,

j1

4j100

100

-04

o o

V

)45t10cos(

2

4)t(

W1050

12

12

4R

V

2 2

j4)(2

s i

mAj3)j2)(4-(6

)45j4)(4(2

mA2j6

-o

°

∠+

-2 2

540

4202

1R2

Trang 43

Chapter 11, Solution 67

51.02

11

F1.0,6H

3,

x j C j j

ω

42510

50)

Z

j

j j

68

2052.05638.06

8

0206.0

+

+

=+

=

mVA86

.3618mVA8.104.14)87.1606.0)(

203.0(2

j

j Z

V I V Z

Z

7.990224.0)206.0()68(12

)42(,

3 1

|

|2

Trang 44

o R R

S

LI2

1j0jQ

o L

1j0jQ

o c

−ω+

C

1 L j R I 2

= cos

)12j10)(

2(

)120(2

The average power absorbed =P=Re(S)= 295 1 W

(c) For unity power factor, θ1 =0°

09.354

, which implies that the reactive power due

to the capacitor is Qc =

2

1X2

VQ

c

2

c = = ω

)120)(

60)(

2(

)09.354)(

2(V

Q2

Trang 45

Chapter 11, Solution 70

6.0sin8

.0cos

528)6.0)(

880(sinS

If the power factor is to be unity, the reactive power due to the capacitor is

VAR528Q

Qc = =

c

2 rms

V

Q2CV

C2

1X

VQ

ω

=

→

ω

=

=

)220)(

50)(

2(

)528)(

2(

Chapter 11, Solution 71

67.666.0

508.08.0,

6.0,

50,

065.1067071.0

2 2

1

P

5067.66,

065.106065

98.176.18106.56735.1722

S

058.56)098.17(tan735.172)tan

058.56

Q C

rms c

)tan(tan

P

Qc = θ1− θ2

kVAR]

84.25tan(

)54.40tan(

)[

40(

kVAR84

.14

Qc =

rms

c

)120)(

60)(

2(

14840V

Q

Trang 46

(b) θ1 =40.54°, θ2 =0°

kVAR21.34kVAR]

0)54.40tan(

)[

40(

60)(

2(

34210V

V S

1 , θ =cos-1(0.96)=16.26°

2

]tan(16.26-

35tan(

[10]tantan

[P

=c

Q 4 083 kVAR

rms

c

)240)(

60)(

2(

4083V

Q

(d) S2 =P2 +jQ2, P2 =P1 =10kW

kVAR917

.2083.47QQ

Q2 = 1− c = − =

kVA917.2j10

2

* 2

Trang 47

Chapter 11, Solution 74

(a) θ =cos-1(0.8)=36.87°

1

kVA308.0

24cos

PS

)6.0)(

30(sinS

kVA18j24

kVA105.4295.0

40cos

PS

.13sin

S

kVA144.13j40

2 = +

S

kVA144.31j64

= cos

(b) θ2 =25.95°, θ1 =0°

kVAR144

.31]0)95.25tan(

[64]tantan

[P

rms

c

)120)(

60)(

2(

144,31V

Q

Trang 48

Chapter 11, Solution 75

5j8

576050

j80

)240

* 1

2

+

=+

=

=

Z

V S

VA91.208j13.3587j12

576070

j120

)240

)240

S

=++

68.114tan- 1

= cos

(c) Qc =P[tanθ2 −tanθ1]=18.35.88[tan(3.574°)−0]

VAR68.114

Qc =

rms

c

)240)(

50)(

2(

68.114V

8j23j4

1230

3 Vo = Vo + Vo

−+

°

Trang 49

=+

52.23j14.36o

V

)30-3)(

19.86347.11(2

12

o

= V I S

8jLjH

-j5Cj

1F

1

(15)(-j5)-j5)

)5.4j5.1()8j6(

120

I

)5.4j5.1()5.14(2

12

12

Trang 50

-j3Cj

1F

12

1

)3j-)(

4(4j53j-

||

44j5

−++

=+

+

=

Z

08.2j44

08.2j44.16

20

I

)08.2j44.6()207.1(2

12

Trang 51

x500x100j

1C

j

1F

500,j

10x10x100jmH

2 1 2 1 2

1 2 1 o

1

V)40j6(V)40j

)VV(320

VVj

VVI

=

−+

−+

2 2 1

1,

4141.08443.040

j VI

S j

110

Z V

Trang 52

(b) 1890.625

4.6

)110

°

=Scos 1559.76

Chapter 11, Solution 81

kWh consumed =4017−3246=771kWh

The electricity bill is calculated as follows :

(a) Fixed charge = $12 (b) First 100 kWh at $0.16 per kWh = $16 (c) Next 200 kWh at $0.10 per kWh = $20 (d) The remaining energy (771 – 300) = 471 kWh

,30,

600,2482.0000,

S= 1+ 2 = 1+ 2 + 1+ 2 = +

AkV22.34

|S

|

S= =(b) Q = 17.171 kVAR

220,34

600,

[tan(cos 0.865) tan(cos 0.9)] 2833VAR600

,29

)tan(tan

PQ

1 1

2 1

Q C

rms c

Trang 53

Chapter 11, Solution 83

(a) S VI (210 60o)(8 25o) 840 35o

2

12

W1.68835

cos840

,1

000,120

$

3 0 10 per kWh Chapter 11, Solution 85

(a) 15mH   → jx60x15x10− 3 = j5.655

We apply mesh analysis as shown below

I1

+

Trang 54

60)

120(2

* Th

)104)(

1012.4)(

2(j75Lj

Z

Ω+

80R

V I

V

2 2

2 2 2

2 2 2

)6.1()3(RX

5377.2tanR

Xtan- 1 - 1

= cos

Trang 55

kVAR51.7))78.0(sin(cos12

sinS

=+

=P jQ

S 9 36+j 7 51 kVA

2 2

*

*

2

10)51.7j36.9(

)210(

×+

V S

kVA94.2352cos

PS

.1239sin

S

Additional load :

kW300

kVA375cos

PS

sinS

Trang 56

Total load :

jQP)QQ(j)PP

2000

kVAR5

.1464225

5.1239

The minimum operating pf for a 2300 kW load and not exceeding the kVA rating of the generator is

9775.094.2352

2300S

Pcos

1

=

=

or θ=12.177°

The maximum load kVAR for this condition is

)177.12sin(

94.2352sin

S

kVAR313

.496

=

)15)(

220(

2700S

Pcos

3.1897)

09.35sin(

)15(220sin

S

When the power is raised to unity pf, θ1 =0° and Qc =Q=1897.3

rms

c

)220)(

60)(

2(

3.1897V

Q

Trang 57

Chapter 11, Solution 92

(a) Apparent power drawn by the motor is

kVA8075.0

60cos

.52)60()80(PS

Total real power

kW8020060PPP

P= m + c+ L = + + =

Total reactive power

=+

=++

=Q Q Q 52.915 20 0

Total apparent power

=+

= P2 Q2

51.86

80S

7285.3pf

P

kVAR796

.2))8.0(sin(cosS

1

kVA796.2j7285.3

S

kW2.1

kVA0j2.1

2 = +

S

kW2.1)120)(

10(

kVA0j2.1

3 = +

S

Trang 58

.1

kVA2sin

QS

2(cosS

kVA6.1j2.1

4 = −

S

4 3 2

1 S S S S

kVA196.1j3285

=

S

Total real power = 7 3285 kW

Total reactive power = 1 196 kVAR

196.1tan- 1

1

kW700cos

S

kVAR14

.714sin

P2 = 1 =

kVA84.73695.0

700cos

PS

.230sin

S

Trang 59

Q

Cost of installing capacitors=$30×484.06=$ 14 , 521 80

(b) Substation capacity released =S1−S2

kVA16.26384.736

(c) Yes, because (a) is greater than (b) Additional system capacity obtained

by using capacitors costs only 46% as much as new substation and distribution facilities

* s

L = Z → R =R , X =X

Z

LC

1X

Trang 60

×

×π

=

)1040)(

1080(2

1LC

2

1f

9 - 3

- 2 814 kHz

)10)(

4(

)6.4(R4

VP

=40 j8

ZTh

=

= * Th

L Z

)40)(

8(

)146(R

8

VP

2

Th

2 Th

W 61 66

Chapter 11, Solution 97

Ω+

=+++

=(2)(0.1 j) (100 j20) 100.2 j22

ZT

22j2.100

240Z

=

=

)22()2.100(

)240)(

100(I

100R

I

Ngày đăng: 17/10/2013, 11:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN