1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải mạch P17

59 297 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Solution 1
Trường học University of Science and Technology
Chuyên ngành Mathematics
Thể loại bài giải
Thành phố hanoi
Định dạng
Số trang 59
Dung lượng 1,78 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

b yt is not periodic although sin t and 4 cos 2πt are independently periodic.. Since the sum of a periodic function and a constant is also periodic, ht is periodic... Calculate the Fouri

Trang 1

Chapter 17, Solution 1

(a) This is periodic with ω = π which leads to T = 2π/ω = 2

(b) y(t) is not periodic although sin t and 4 cos 2πt are independently

periodic

(c) Since sin A cos B = 0.5[sin(A + B) + sin(A – B)],

g(t) = sin 3t cos 4t = 0.5[sin 7t + sin(–t)] = –0.5 sin t + 0.5 sin7t

which is harmonic or periodic with the fundamental frequency

ω = 1 or T = 2π/ω = 2π

(d) h(t) = cos 2 t = 0.5(1 + cos 2t) Since the sum of a periodic function and

a constant is also periodic, h(t) is periodic ω = 2 or T = 2π/ω = π

(e) The frequency ratio 0.6|0.4 = 1.5 makes z(t) periodic

(c) f3(t) = 4 sin2 600π t = (4/2)(1 – cos 1200π t)

ω = 1200π or T = 2π/ω = 2π/(1200π) = 1/600

(d) f4(t) = e j10t = cos 10t + jsin 10t ω = 10 or T = 2π/ω = 0.2π

Trang 2

ncos(

nsinn

nsinn

2

nsin(

ncosn

ncosn

10x

2 cosn tn

t

π = [–5/(n

2π2)](cos 2nπ – 1) = 0

Trang 3

2 sinn tn

5

ππ

t5

1 n

ππ

2

5.0]x2x[2

1dt)t(z

π

−π

−π

sinn

1ntdtcos2

1ntdtcos1

1dtncos)t(z

−π

evenn

0,

oddn,n

6nt

cosn

2nt

cosn

1ntdtsin2

1ntdtsin1

1dtncos)t(z

65

1

n∑∞

=

= π+

=

Trang 4

Chapter 17, Solution 6

.0a,functionodd

anisthis

Since

32

6)1214(2

1dt)t(y2

1

a

2

2,

2

T

n

2 0 o

o

=

=

=+

ππ

+

=

−π

−π

−π

−π

=

π

−ππ

−ππ

=ππ

−ππ

=

π+

π

=

odd

n 1n

even n , 0

odd n , n 4

2 1

1 0

2 1

1 0

2

n

)tnsin(

n

14

3)

t

(

y

))ncos(

1(n

2))ncos(

1(n

2))ncos(

1(n4

))ncos()n(cos(

n

2)1)n(cos(

n

4)

tncos(

n

2)tncos(

n4

dt)tnsin(

2dt)tnsin(

4dt)tnsin(

)t(y2

2

b

Chapter 17, Solution 7

0a,6T/2,

/nsinn

106

/nsin

π

−π

2b

Trang 5

[cos n /3 cosn /3 2sin n /3]

n

106

/ntncosn

106

/ncosn

π+π

π

=

1 n

n

ncosn /6 b sinn /6a

)t(

where an and bn are defined above

Chapter 17, Solution 8

π

tdt)1t(22

1dt

nsinn

1tnsinn

ttncosn

12tdtncos)1t(22

2dtncos

2 1

=π+

− π π

= π +

= ω

n cos n

1 t n cos n

t t n sin n

1 2 tdt n sin ) 1 t ( 2 2

2 dt n sin

2 1

1

T

0

o n

∑∞

=

π

−π

=

1 n

n

tncosn

)1(4

2,

T

183.3

104

/sin)

4(4

1004/cos108

2)

(

0 2

0 0

Trang 6

[ t n t n ]dt dt

t n t

dt n t

40cos

/sin

25]12/[cos

For n>1,

2

)1(sin)1(

202

)1(sin)1(

204

)1(sin)1(

204

)1(sin)

++

=

−+

++

n

n n

n n

t n n

π

ππ

ππ

ππ

0sin

102sin4

20,

3662.62/sin

20sin

ππ

3 2

0

t jn T

0

1 0

2 1

t jn t

jn t

o jn

e2jn

e42

1dte

)2(dte

42

1dte

)t(h

oddn,n

j6]

6ncos6[n

je

2e

24e

4n

=

−ππ

=+

−π

Thus,

t jn

odd n n

en

6j)

=

Trang 7

Chapter 17, Solution 11

2/T/2,

− ω

− T

0

0 1

1 0

2 / jn 2

/ jn t

o jn

4

1dte

)t(y

−π

−π

2 2

2 / jn

jn

2e

jn

2)12/jn(4/n

−π

+

−ππ

−π

π

− π

π

jn

2e

jn

2e

jn

2)12/jn(en

4jn

2n

44

2 2 2

2

=

But

2/nsinj2/nsinj2/ncose

,2/nsinj2/nsinj2/ncos

e2/nsinn2/nsin)12/jn(j1n

1)

t(

−π+π

0

2 T

4)

3/tt(2

2 0 3

=

−π

π

=

−ππ

Trang 8

0 2

T 0

n

t2)ntcos(

n

21dt)ntcos(

)tt2(T

2

+

−π

0 2

4)n2cos(

nn

1)11(n

2(T

0

2

π π

−+

π

−π

0 2

2 3

0

n

1))ntcos(

nt)nt(sin(

n

1n

2

0n

4n

4

=

π+π

1

n 2

2

) nt cos(

n

4 3

0

an = (2/T) ∫T ω

0h(t)cos(n ot)dt = [2/(2π)] ∫0π + ∫ππ − π 

2

dt)ntcos(

)tsin(

20dt

)ntcos(

tsin10

Since sin A cos B = 0.5[sin(A + B) + sin(A – B)]

sin t cos nt = 0.5[sin((n + 1)t) + sin((1 – n))t]

sin(t – π) = sin t cos π – cost sin π = –sin t

sin(t – π)cos(nt) = –sin(t)cos(nt)

Trang 9

an = π ∫0π + + − − ∫ππ + + − 

2

dt)]t]n1sin([

)t]n1[sin([

20dt)]

t]n1sin([

)t]n1[sin([

+

++

2n

1

)t]n1cos([

2n

1

)t]n1cos([

n1

)t]n1cos([

π+

++

)]n1cos([

3n

1

)]n1cos([

3n1

3n1

35

But, sin A sin B = 0.5[cos(A–B) – cos(A+B)]

sin t sin nt = 0.5[cos([1–n]t) – cos([1+n]t)]

bn = (5/π){[(sin([1–n]t)/(1–n)) – (sin([1+n]t)/(1+ n)]0π + [(2sin([1-n]t)/(1-n)) – (2sin([1+n]t)/ + π2π

)]

n1

n1

)]n1sin([

60 30

Trang 10

) 4 / n sin(

1 n

10 ) nt 2 cos(

) 4 / n cos(

1 n

10 2

Chapter 17, Solution 15

(a) Dcos ωt + Esin ωt = A cos(ωt - θ)

where A = D2 +E2 , θ = tan-1(E/D)

n

1)1n

1

2 1 6

2

1 n tan nt 10 cos n

1 ) 1 n ( 16

(b) Dcos ωt + Esin ωt = A sin(ωt + θ)

where A = D2 +E2 , θ = tan-1(D/E)

++

1

3 1 6

2

n 4 tan nt 10 sin n

1 ) 1 n ( 16

Trang 11

Comparing v2*(t) with v1(t) shows that

v2*(t) = 2v1((t + to)/2) where (t + to)/2 = 0 at t = -1 or to = 1

Hence v2*(t) = 2v1((t + 1)/2)

But v2*(t) = v2(t) + 1

v2(t) + 1 = 2v1((t+1)/2)

v2(t) = -1 + 2v1((t+1)/2)

= -1 + 1 − π82 cosπ +t 21 + 91cos3π +t 21 + 251 cos5π +t 21 +"

v2(t) = − π82 cosπ2t + π2 + 91cos32πt + 32π+ 251 cos52πt + 52π+"

1 2

t 3 sin 9

1 2

t sin

(c) cos nπ(-t) sin nπ(-t) = - cos nπt sin nπt, odd

(d) sin2 n(-t) = (-sin πt)2 = sin2 πt, even

(e) et, neither odd nor even

Trang 12

t41T

1 8

2 / T

6

2dt)t(T

2

Trang 13

= 13(2t − 4t) +4(3−2)

2 1

an = ∫T/4 π

0 (t)cos(n /3)dtT

tnsinn

36

163

tnsinn

33

tnsinn

t33

tncosn

96

n cos 3

n 2 cos n

1 24 2

At t = 2,

f(2) = 2 + (24/π2)[(cos(2π/3) − cos(π/3))cos(2π/3)

+ (1/4)(cos(4π/3) − cos(2π/3))cos(4π/3) + (1/9)(cos(2π) − cos(π))cos(2π) + -]

= 2 + 2.432(0.5 + 0 + 0.2222 + -) f(2) = 3.756

2

tncos)t1(24

4dt)tncos(

)t(T

4

Trang 14

1

t n cos 2

n cos 1 n

8 2

1

Chapter 17, Solution 22

Calculate the Fourier coefficients for the function in Fig 16.54

f(t) 4

t -5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 17.61 For Prob 17.22 This is an even function, therefore bn = 0 In addition, T=4 and ωo = π/2

0 2 1

0

2 T

4

2dt)t(T

4

4dt)ntcos(

)t(T4

1

0 2

n

t2)2/tncos(

n

44

=

n

8 ) 1 ) 2 / n (cos(

−ππ

Chapter 17, Solution 23

f(t) is an odd function

f(t) = t, −1< t < 1

ao = 0 = an, T = 2, ωo = 2π/T = π

Trang 15

bn = ∫ ω = ∫1 π

0

2 / T

2

4dt)tnsin(

)t(T

4

0 2

2 sin(n t) n tcos(n t)n

π = −[2/(nπ)]cos(nπ) = 2(−1)n+1/(nπ)

) n sin(

n

) 1 ( 2

4

f(t) = 1 + t/π, 0 < t < π

bn = ∫π + π

π 0 (1 t/ )sin(nt)dt2

n

1)ntcos(

n

12

= [2/(nπ)][1 − 2cos(nπ)] = [2/(nπ)][1 + 2(−1)n+1]

a2 = 0, b2 = [2/(2π)][1 + 2(−1)] = −1/π = −0.3183 (b) ωn = nωo = 10 or n = 10

a10 = 0, b10 = [2/(10π)][1 − cos(10π)] = −1/(5π) Thus the magnitude is A10 = 2

Trang 16

(c) f(t) = ∑∞ π

=

π

−π

1 n

)ntsin(

)]

ncos(

21[n2

f(π/2) = ∑∞

=

ππ

−π

1 n

)2/nsin(

)]

ncos(

21[n

2

π

For n = 1, f1 = (2/π)(1 + 2) = 6/π For n = 2, f2 = 0

For n = 3, f3 = [2/(3π)][1 − 2cos(3π)]sin(3π/2) = −6/(3π) For n = 4, f4 = 0

For n = 5, f5 = 6/(5π), Thus, f(π/2) = 6/π − 6/(3π) + 6/(5π) − 6/(7π) -

= (6/π)[1 − 1/3 + 1/5 − 1/7 + -]

f(π/2) ≅ 1.3824 which is within 8% of the exact value of 1.5

3

4dt)tnsin(

)t(T

4

Trang 17

=

1

0 2

nt2cosn2

t33

nt2sinn4

93

33

n2sinn4

93

4

2 2

1

t 2 sin 3

n 2 cos n

2 3

n 2 sin n 3

1 0

T

4

1dt)t(T

1

= 1

an = (t)cos(n t)dtT

ππ+

ππ

22

tnsinn

42

tnsinn

22

nsinn4

bn = ∫T ω

0 (t)sin(n ot)dtT

2

2

tnsin1dt2

tnsin2dt2

tnsin142

ππ

22

tncosn

42

tncosn22

Trang 18

= [cos(n ) 1]

n

πHence

ππ

−ππ

+

1

n

) 2 / t n sin(

) 1 ) n (cos(

) 2 / t n cos(

)) 2 / n sin(

) 2 / n 3 (sin(

2 1

tncosn

t22

tnsinn

4dt

2

tnsint

ππ

∫4

2

ncosn

22

nsinn

2

2

1a

Frms2 = 0.5Σbn2 = [1/(2π2)][(16/π2) + 1 + (16/(8π2)) + (1/4) + (16/(625π2))] = (1/19.729)(2.6211 + 0.27 + 0.00259)

Frms = 0.14659 = 0.3829

Compare this with the exact value of Frms = t dt 1/6

T

2 1 0

Trang 19

4dt)tncos(

)t(T

4

=

1

0 2

n

t)tncos(

n

1)tnsin(

n

14

−ππ

n

t)tnsin(

n

1)tncos(

1

k 2 2

) n sin(

n

4 ) n cos(

2

− 2 cos(nt) ntsin(nt) 0n

2

= 4/(n2π)

−π

)ntsin(

)t(

Trang 20

1 ) nt cos(

2 / T 2 /

o t

o jn

T

1dte

)t(T

(b) The first term on the right hand side of (1) vanishes if f(t) is odd Hence,

Chapter 17, Solution 31

/T

2'T

2'/

T'T),t()

→

α

0

o

'T

2tdt'ncos)t(h'T

2'a

Let αt=λ , dt =dλ/α, αT'=T

n T

0

o

n ( )cosn d / aT

2'

Similarly, bn'=bn

Trang 21

Chapter 17, Solution 32

When is = 1 (DC component)

i = 1/(1 + 2) = 1/3 For n 1, ≥ ωn = 3n, Is = 1/n2∠0°

I = [1/(1 + 2 + jωn2)]Is = Is/(3 + j6n)

n41n

1)

3/n(tann13

0n1

2 2

1 2

2

∠+

=

∠+

+

1 n

1 2

2 cos( 3 n tan ( 2 n ))

n 4 1 n 3

1 3

1

Chapter 17, Solution 33

For the DC case, the inductor acts like a short, Vo = 0

For the AC case, we obtain the following:

s o

o o

s o

VVn

5n.2j1

04

Vjnnj

V10

VV

=

π+π+

)5n

.2(jn

4

n

5n.2j1

1n

4A

n

5n.2j1

VV

2 2 n

n

s o

−π+

π

=

Θ

−π+

π

n

5n

.2tan

;)5n

.2(n

4

2 2 2 2

2 n

Trang 22

A)

t(v

1 n

n n

=

Θ+π

tan)2/()4/n[(

4nn20

)n/)2n((

tan)2n(nn

)2/)4/n((

20

2 1 2

2

2 1 2

2 2 2

−π

−π

∠+

=

−+

π

−π

2 1 2

2 n tan 2 4

n nt cos 4 n n 20

Trang 23

1

f 2 (t)

2

t -2 -1 0 1 2 3 4 5

Figure 17.57(b) For Prob 17.35 The signal is even, hence, bn = 0 In addition, T = 3, ωo = 2π/3

13

4

n

2)

3/n2sin(

n

6)

3/n2sin(

n

33

π

vs(t) = ∑∞

=

ππ

π

1 n

)3/tncos(

)3/n2sin(

n

1234

Now consider this circuit,

4(jn12

v9j

2 2

s

−π+

π

Trang 24

For the dc case, n = 0 and vs = ¾ V and vo = vs/2 = 3/8 V

We can now solve for vo(t)

3

t n 2 cos A 8

3

1 n

π

ππ

n 2

3 3

n tan 90

and 6

3

n 4 n

16

) 3 / n 2 sin(

n

6

n 2

2 2 2

2 n

where we can further simplify An to this,

81 n

4 n

) 3 / n 2 sin(

9

4 4 n

+ππ

12

nsinn

1n

2 2 2 2

π+

π

=

ππ

ωn = n and 2 H becomes jωnL = j2n Let Z = 1||j2n = j2n/(1 + j2n)

If Vo is the voltage at the non-reference node or across the 2-H inductor

Vo = ZVs/(1 + Z) = [j2n/(1 + j2n)]Vs/{1 + [j2n/(1 + j2n)]}

= j2nVs/(1 + j4n) But Vs = An∠−θn

Vo = j2n An∠−θn/(1 + j4n)

Trang 25

nsin9n1

n4tan5.10010

io(t) = cos( nt 100 5 tan 4 n )

n 16 1

1 10

2

odd

n 1 n

1 2

+

1 k

),tnsin(

n

120

For the DC component, the capacitor acts like an open circuit

Vo = 5 For the nth harmonic,

Vs = [20/(nπ)]∠0°

10 mF becomes 1/(jωnC) = −j/(nπx10x10−3) = −j100/(nπ)

vo =

2 2

1 s

n25n

n

5tan90

100n

20100jn20

100j20

n

100j

Vn

100j

π+π

π+

°

−π

=+π

−π

π+π

n

5 tan 90

t n sin(

n 25 n

1

2 2

Trang 26

=

1 k

n

122

1)t(v

π

=ωω

+

ω

j1

j

n

n o

1 o

1 2

2

o o

n1

ntan2

90n

2ntann

1

90nV

π+

•π

∠π+

∠π

1kn),ntantncos(

n1

2)

t(

+

1 k

),tnsin(

n

110

T = 2, ωo = 2π//T = π, ωn = nωo = nπ For the DC component, io = 5/(20 + 40) = 1/12

For the kth harmonic, Vs = (10/(nπ))∠0°

Trang 27

Let Z = −j20/(nπ)||(40 + j0.1nπ) =

π+

π+

π

n.0j40n

20j

)n.0j40(n

20j

=

)20n

.0(jn40

800jnn

.0jn4020j

n.0j40(20j

2 2 2

−π

=π+

π+

π+

Zin = 20 + Z =

)20n

.0(jn40

)1200n

(jn802

2 2

2 2

−π+

π

−π+

π

I =

)]

1200n

2(jn802[n

)200n

(jn400Z

V

2 2

2 2

in

s

−π+

ππ

−π+π

=

Io =

)20n

.0(jn40

I20j)

n.0j40(n

20j

In

20j

2

2π −+

π

=π+

2(jn802[n

200j

2

2π −+

ππ

=

2 2

2 2

2 2 1

)1200n

()802(n

)}

n802/(

)1200n

{(

tan90

200

−π+π

π

−π

+

1 k

n

n sin( n t ) I

200 20

°

=

n802

1200n

2tan90

2 2 1 n

In =

)1200n

()n804(n

1

2 2

π

Trang 28

1

0

2 1

0

T

0v(t)cos(n t)dt 2(1 t)cos(n t)dtT

2

=

1

0 2

n

t)tncos(

n

1)tnsin(

n

12

−ππ

=

2 2

2 2 2

2

)1n(

4odd

n,n4

evenn

,0)ncos1(n

2

−π

=

=

−π

0

T

0v(t)sin(n t)dt 2 (1 t)sin(n t)dtT

−ππ

n

2)

tncos(

n

t)tnsin(

n

1)tncos(

n

12

1

0 2

2 1

n

)1n(

16n

4A

,n2

)1n(

−π

=

−π

tan

For the DC component, vs = 1/2 As shown in Figure (a), the capacitor acts like an open circuit

Trang 29

Vo = 3i = 0.75 For the nth harmonic, we consider the circuit in Figure (b)

ωn = nπ, Vs = An∠–φ, 1/(jωnC) = –j4/(nπ)

At the supernode,

(Vs – Vx)/1 = –[nπ/(j4)]Vx + Vo/3

Vs = [1 + jnπ/4]Vx + Vo/3 (3) But –Vx – 2Vx + Vo = 0 or Vo = 3Vx

Substituting this into (3),

Vs = [1 + jnπ/4]Vx + Vx = [2 + jnπ/4]Vx = (1/3)[2 + jnπ/4]Vo = (1/12)[8 + jnπ]Vo

Vo = 12Vs/(8 + jnπ) =

)8/n(tann

64

A12

1 2

2

n

π

∠π+

16n

4n

64

4 4

2 2 2

−π

+ππ

+

Trang 30

Thus

vo(t) = ∑∞

=

θ+π+

1 n

n

n cos( n t ) V

4 3

2

2 ( 2 n 1 )

16 n

4 n

64

12

−π

+ππ

14

2

For the DC component,

Vin = 2/π The inductor acts like a short-circuit, while the capacitor acts like an open circuit

Vo = Vin = 2/π For the nth harmonic,

Vin = [–4/(π(4n2 – 1))]∠0°

2 H becomes jωnL = j4n 0.1 F becomes 1/(jωnC) = –j5/n

°

−+

)1n4(

04)

10n(j4

10j

2

Trang 31

=

2 2

1

)10n(16)1n4(

)}

5.2n2(tan90{40

−+

−π

π n 1 A n cos( 2 nt n ) 2

where

An =

29 n 40 n 16 ) 1 n 4 (

+

=

1 k

s sinn , n 2k-1

n

1205

v

π

=ωω

=

→

−ω

=

nn

,VRC

jV

)V0(CjR

0

V

o n

s n o o

n s

For n = 0 (dc component), Vo=0

For the nth harmonic,

2 2

5 9

4 2 2 o

o o

n

1010

x40x10xn

2090

n

20RCn

901V

π

=

∠ππ

10)t(v

Alternatively, we notice that this is an integrator so that

=

=ππ

n

12

10dtvRC

1)t(v

Trang 32

Chapter 17, Solution 43

2

130)

ba(2

1

1 n

2 n

2 n

Trang 33

Z = R + jωnL + 1/(jωnC) = 10 + j2n – j25/n

I = V/Z For n = 1, V1 = 100, Z = 10 + j2 – j25 = 10 – j23

3

1 n

n n n

V21

0

T

2dt)t(fT1

f(t) =

2t1,0

1t0,22

0

2dt 2(t t t /3))

t1(44

Trang 34

6416642

14

1A

2

1

1 n

2 n

≅+ ∑∞

Trang 35

Z = 2||(–j/n) = 2(–j/n)/(2 – j/n) = –j2/(2n – j)

V = ZI = [–j2/(2n – j)]I For n = 1, V1 = [–j2/(2 – j)]16∠45° = 14.311∠–18.43° mV

1 n

n n n

V21

= 20x40 + 0.5x10x0.014311cos(45° + 18.43°) +0.5x12x0.005821cos(–60° + 135.96°)

= 800.1 mW Chapter 17, Solution 49

2

1dt4dt12

1dt)t(zT

1Z

0

2 T

0

2 rms

=

π

581.1

Zrms =(b)

9193.2

25

116

19

14

1118

14

1n

362

14

1)ba(2

1a

2 o

=π+

=+

rms =Z

Trang 36

Chapter 17, Solution 50

nt j

1

n,

dte)t(T

Using integration by parts,

1 1 t jn 1

1

t

jn2

1e

jn2

jn

)j(n2

1e

en

j

π

− π

π

−π++

n

)1(j)nsin(

n2

j2n

)1

2 2

n

jThus

f(t) = ∑∞

−∞

=

ω n

t jn

n e n

j ) 1 (

Chapter 17, Solution 51

π

0 T

0

2 2 2 2

t jn t

jn 2 t

o jn

)jn(

e2

1dte

t2

1dte

)t(T

2)n4jn

(n

−π

=

n

t jn 2

n

2)

t

(

Trang 37

Chapter 17, Solution 52

nt j

1

n,

dte)t(T

Using integration by parts,

1 1 t jn 1

1

t

jn2

1e

jn2

jn

)j(n2

1e

en

j

π

− π

π

−π++

n

)1(j)nsin(

n2

j2n

)1

2 2

n

jThus

f(t) = ∑∞

−∞

=

ω n

t jn

n e n

j ) 1 (

0

t jn

nj1

1e

n2j1

0

t n j 1

π+

n

t n 2 j

n 2 j 1

e 6321 0

Trang 38

2 / jn 1

0

2 /

e241

= [ − π − + − π − − π − − π + − π]

π

jn n

j 2 / jn jn

2 /

e2n2j

= [ − π − + − π]

π

jn 2

/

e3n2j

f(t) = ∑∞

−∞

=

ω n

t jn

ne oc

0

t0),tsin(

t

j2

12

1dte)tsin(

21

=

+ π

− π

π +

n1

1e

n1

1e

41

)n1(j

e)n1(j

ej41

) 1 n ( )

n 1 (

0

) n 1 ( jt )

n 1 ( jt

Trang 39

[e 1 ne n e 1 ne n]

)1n(4

−π

But ejπ = cos(π) + jsin(π) = –1 = e–jπ

)n1(2

e12ne

nee

e)1n(4

1

2

jn jn

jn jn

−π

π

− π

− π

− π

− π

−π

+

n

t jn 2

jn

e ) n 1 ( 2

e 1

0 n n

t jn

2 e ) 1 n ( 2

) jn 1 ( 10

nt 50 j

3 e 2 n

3 3

) n cos(

j n

2

1 ) n cos(

4

Trang 40

+

0 n n

t ) 1 n 2 (

) 1 n 2 (

e 5 j 2

= 6 + 4cos(t)cos(50°) – 4sin(t)sin(50°) + 2cos(2t)cos(35°)

– 2sin(2t)sin(35°) + cos(3t)cos(25°) – sin(3t)sin(25°) + 0.5cos(4t)cos(20°) – 0.5sin(4t)sin(20°)

= 6 + 2.571cos(t) – 3.73sin(t) + 1.635cos(2t)

– 1.147sin(2t) + 0.906cos(3t) – 0.423sin(3t) + 0.47cos(4t) – 0.171sin(4t)

Trang 41

(b) frms = ∑∞

=

+

1 n

2 n

2

2

1a

/220

o = = π → = π=

ω

(b) f(t) a A cos(n t ) 3 4cos(20t 90 ) 5.1cos(40t 90o)

1 n

o n

o n

1t0,1

2 / T

3

2dt)t(T

2 / T

3

4dt)tncos(

)t(T4

5 1

1

1

tn2sinn

63

tn2sinn

334

= [–2/(nπ)]sin(2nπ/3)

Trang 42

1

tn2cos3

nsinn

1234

=+

3

nsinn

2

b2 n

2 n

a

A1 = 0.5513, A2 = 0.2757, A3 = 0, A4 = 0.1375, A5 = 0.1103 The amplitude spectra are shown below

1.333

0.1103 0.1378

0 0.275 0.551

4 3 2

Trang 43

π

=+

2 n

a

= 2 2

n

44.441n

Trang 44

φn = tan–1(bn/an) = tan–1{[–3/(nπ)][n2π2/20]} = tan–1(–nx0.4712)

The schematic is shown below The waveform is inputted using the attributes of

VPULSE In the Transient dialog box, we enter Print Step = 0.05, Final Time = 12, Center Frequency = 0.5, Output Vars = V(1) and click enable Fourier After simulation, the output plot is shown below The output file includes the following Fourier

components

Ngày đăng: 19/10/2013, 17:15

w