b yt is not periodic although sin t and 4 cos 2πt are independently periodic.. Since the sum of a periodic function and a constant is also periodic, ht is periodic... Calculate the Fouri
Trang 1Chapter 17, Solution 1
(a) This is periodic with ω = π which leads to T = 2π/ω = 2
(b) y(t) is not periodic although sin t and 4 cos 2πt are independently
periodic
(c) Since sin A cos B = 0.5[sin(A + B) + sin(A – B)],
g(t) = sin 3t cos 4t = 0.5[sin 7t + sin(–t)] = –0.5 sin t + 0.5 sin7t
which is harmonic or periodic with the fundamental frequency
ω = 1 or T = 2π/ω = 2π
(d) h(t) = cos 2 t = 0.5(1 + cos 2t) Since the sum of a periodic function and
a constant is also periodic, h(t) is periodic ω = 2 or T = 2π/ω = π
(e) The frequency ratio 0.6|0.4 = 1.5 makes z(t) periodic
(c) f3(t) = 4 sin2 600π t = (4/2)(1 – cos 1200π t)
ω = 1200π or T = 2π/ω = 2π/(1200π) = 1/600
(d) f4(t) = e j10t = cos 10t + jsin 10t ω = 10 or T = 2π/ω = 0.2π
Trang 2ncos(
nsinn
nsinn
2
nsin(
ncosn
ncosn
10x
2 cosn tn
t
π = [–5/(n
2π2)](cos 2nπ – 1) = 0
Trang 32 sinn tn
5
ππ
t5
1 n
ππ
2
5.0]x2x[2
1dt)t(z
π
=π
−π
=π
−π
=ω
sinn
1ntdtcos2
1ntdtcos1
1dtncos)t(z
=π
+π
−
=π
−π
=ω
evenn
0,
oddn,n
6nt
cosn
2nt
cosn
1ntdtsin2
1ntdtsin1
1dtncos)t(z
65
1
n∑∞
=
= π+
−
=
Trang 4Chapter 17, Solution 6
.0a,functionodd
anisthis
Since
32
6)1214(2
1dt)t(y2
1
a
2
2,
2
T
n
2 0 o
o
=
=
=+
ππ
+
=
=π
−π
=π
−π
−π
−π
=
π
−ππ
−
−ππ
−
=ππ
−ππ
−
=
π+
π
=ω
=
odd
n 1n
even n , 0
odd n , n 4
2 1
1 0
2 1
1 0
2
n
)tnsin(
n
14
3)
t
(
y
))ncos(
1(n
2))ncos(
1(n
2))ncos(
1(n4
))ncos()n(cos(
n
2)1)n(cos(
n
4)
tncos(
n
2)tncos(
n4
dt)tnsin(
2dt)tnsin(
4dt)tnsin(
)t(y2
2
b
Chapter 17, Solution 7
0a,6T/2,
/nsinn
106
/nsin
π
−π
2b
Trang 5
[cos n /3 cosn /3 2sin n /3]
n
106
/ntncosn
106
/ncosn
π+π
π
=
1 n
n
ncosn /6 b sinn /6a
)t(
where an and bn are defined above
Chapter 17, Solution 8
π
=π
=ω
tdt)1t(22
1dt
nsinn
1tnsinn
ttncosn
12tdtncos)1t(22
2dtncos
2 1
=π+
=ω
− π π
−
= π +
= ω
n cos n
1 t n cos n
t t n sin n
1 2 tdt n sin ) 1 t ( 2 2
2 dt n sin
2 1
1
T
0
o n
∑∞
=
π
−π
−
=
1 n
n
tncosn
)1(4
2,
T
183.3
104
/sin)
4(4
1004/cos108
2)
(
0 2
0 0
Trang 6[ t n t n ]dt dt
t n t
dt n t
40cos
/sin
25]12/[cos
For n>1,
2
)1(sin)1(
202
)1(sin)1(
204
)1(sin)1(
204
)1(sin)
++
=
−
−+
++
n
n n
n n
t n n
π
ππ
ππ
ππ
0sin
102sin4
20,
3662.62/sin
20sin
ππ
3 2
=ω
0
t jn T
0
1 0
2 1
t jn t
jn t
o jn
e2jn
e42
1dte
)2(dte
42
1dte
)t(h
oddn,n
j6]
6ncos6[n
je
2e
24e
4n
−
=
−ππ
=+
−
−π
Thus,
t jn
odd n n
en
6j)
−
=
Trang 7Chapter 17, Solution 11
2/T/2,
− ω
− T
0
0 1
1 0
2 / jn 2
/ jn t
o jn
4
1dte
)t(y
−
−π
−π
−
2 2
2 / jn
jn
2e
jn
2)12/jn(4/n
−π
+
−ππ
+π
−π
π
− π
π
jn
2e
jn
2e
jn
2)12/jn(en
4jn
2n
44
2 2 2
2
=
But
2/nsinj2/nsinj2/ncose
,2/nsinj2/nsinj2/ncos
e2/nsinn2/nsin)12/jn(j1n
1)
t(
−π+π
0
2 T
4)
3/tt(2
2 0 3
=
−π
π
=
−ππ
Trang 80 2
T 0
n
t2)ntcos(
n
21dt)ntcos(
)tt2(T
2
+
−π
0 2
4)n2cos(
nn
1)11(n
2(T
0
2
π π
−+
π
−
−π
0 2
2 3
0
n
1))ntcos(
nt)nt(sin(
n
1n
2
0n
4n
4
=
π+π
1
n 2
2
) nt cos(
n
4 3
0
an = (2/T) ∫T ω
0h(t)cos(n ot)dt = [2/(2π)] ∫0π + ∫ππ − π
2
dt)ntcos(
)tsin(
20dt
)ntcos(
tsin10
Since sin A cos B = 0.5[sin(A + B) + sin(A – B)]
sin t cos nt = 0.5[sin((n + 1)t) + sin((1 – n))t]
sin(t – π) = sin t cos π – cost sin π = –sin t
sin(t – π)cos(nt) = –sin(t)cos(nt)
Trang 9an = π ∫0π + + − − ∫ππ + + −
2
dt)]t]n1sin([
)t]n1[sin([
20dt)]
t]n1sin([
)t]n1[sin([
+
++
2n
1
)t]n1cos([
2n
1
)t]n1cos([
n1
)t]n1cos([
π+
−
−
++
)]n1cos([
3n
1
)]n1cos([
3n1
3n1
35
But, sin A sin B = 0.5[cos(A–B) – cos(A+B)]
sin t sin nt = 0.5[cos([1–n]t) – cos([1+n]t)]
bn = (5/π){[(sin([1–n]t)/(1–n)) – (sin([1+n]t)/(1+ n)]0π + [(2sin([1-n]t)/(1-n)) – (2sin([1+n]t)/ + π2π
)]
n1
n1
)]n1sin([
60 30
Trang 10) 4 / n sin(
1 n
10 ) nt 2 cos(
) 4 / n cos(
1 n
10 2
Chapter 17, Solution 15
(a) Dcos ωt + Esin ωt = A cos(ωt - θ)
where A = D2 +E2 , θ = tan-1(E/D)
n
1)1n
1
2 1 6
2
1 n tan nt 10 cos n
1 ) 1 n ( 16
(b) Dcos ωt + Esin ωt = A sin(ωt + θ)
where A = D2 +E2 , θ = tan-1(D/E)
++
1
3 1 6
2
n 4 tan nt 10 sin n
1 ) 1 n ( 16
Trang 11Comparing v2*(t) with v1(t) shows that
v2*(t) = 2v1((t + to)/2) where (t + to)/2 = 0 at t = -1 or to = 1
Hence v2*(t) = 2v1((t + 1)/2)
But v2*(t) = v2(t) + 1
v2(t) + 1 = 2v1((t+1)/2)
v2(t) = -1 + 2v1((t+1)/2)
= -1 + 1 − π82 cosπ +t 21 + 91cos3π +t 21 + 251 cos5π +t 21 +"
v2(t) = − π82 cosπ2t + π2 + 91cos32πt + 32π+ 251 cos52πt + 52π+"
1 2
t 3 sin 9
1 2
t sin
(c) cos nπ(-t) sin nπ(-t) = - cos nπt sin nπt, odd
(d) sin2 n(-t) = (-sin πt)2 = sin2 πt, even
(e) et, neither odd nor even
Trang 12t41T
1 8
2 / T
6
2dt)t(T
2
Trang 13= 13(2t − 4t) +4(3−2)
2 1
an = ∫T/4 π
0 (t)cos(n /3)dtT
tnsinn
36
163
tnsinn
33
tnsinn
t33
tncosn
96
n cos 3
n 2 cos n
1 24 2
At t = 2,
f(2) = 2 + (24/π2)[(cos(2π/3) − cos(π/3))cos(2π/3)
+ (1/4)(cos(4π/3) − cos(2π/3))cos(4π/3) + (1/9)(cos(2π) − cos(π))cos(2π) + -]
= 2 + 2.432(0.5 + 0 + 0.2222 + -) f(2) = 3.756
2
tncos)t1(24
4dt)tncos(
)t(T
4
Trang 141
t n cos 2
n cos 1 n
8 2
1
Chapter 17, Solution 22
Calculate the Fourier coefficients for the function in Fig 16.54
f(t) 4
t -5 -4 -3 -2 -1 0 1 2 3 4 5
Figure 17.61 For Prob 17.22 This is an even function, therefore bn = 0 In addition, T=4 and ωo = π/2
0 2 1
0
2 T
4
2dt)t(T
4
4dt)ntcos(
)t(T4
1
0 2
n
t2)2/tncos(
n
44
=
n
8 ) 1 ) 2 / n (cos(
−ππ
Chapter 17, Solution 23
f(t) is an odd function
f(t) = t, −1< t < 1
ao = 0 = an, T = 2, ωo = 2π/T = π
Trang 15bn = ∫ ω = ∫1 π
0
2 / T
2
4dt)tnsin(
)t(T
4
0 2
2 sin(n t) n tcos(n t)n
π = −[2/(nπ)]cos(nπ) = 2(−1)n+1/(nπ)
) n sin(
n
) 1 ( 2
4
f(t) = 1 + t/π, 0 < t < π
bn = ∫π + π
π 0 (1 t/ )sin(nt)dt2
n
1)ntcos(
n
12
= [2/(nπ)][1 − 2cos(nπ)] = [2/(nπ)][1 + 2(−1)n+1]
a2 = 0, b2 = [2/(2π)][1 + 2(−1)] = −1/π = −0.3183 (b) ωn = nωo = 10 or n = 10
a10 = 0, b10 = [2/(10π)][1 − cos(10π)] = −1/(5π) Thus the magnitude is A10 = 2
Trang 16(c) f(t) = ∑∞ π
=
π
−π
1 n
)ntsin(
)]
ncos(
21[n2
f(π/2) = ∑∞
=
ππ
−π
1 n
)2/nsin(
)]
ncos(
21[n
2
π
For n = 1, f1 = (2/π)(1 + 2) = 6/π For n = 2, f2 = 0
For n = 3, f3 = [2/(3π)][1 − 2cos(3π)]sin(3π/2) = −6/(3π) For n = 4, f4 = 0
For n = 5, f5 = 6/(5π), Thus, f(π/2) = 6/π − 6/(3π) + 6/(5π) − 6/(7π) -
= (6/π)[1 − 1/3 + 1/5 − 1/7 + -]
f(π/2) ≅ 1.3824 which is within 8% of the exact value of 1.5
3
4dt)tnsin(
)t(T
4
Trang 17=
1
0 2
nt2cosn2
t33
nt2sinn4
93
33
n2sinn4
93
4
2 2
1
t 2 sin 3
n 2 cos n
2 3
n 2 sin n 3
1 0
T
4
1dt)t(T
1
= 1
an = (t)cos(n t)dtT
ππ+
ππ
22
tnsinn
42
tnsinn
22
nsinn4
bn = ∫T ω
0 (t)sin(n ot)dtT
2
2
tnsin1dt2
tnsin2dt2
tnsin142
−
ππ
22
tncosn
42
tncosn22
Trang 18= [cos(n ) 1]
n
πHence
ππ
−ππ
+
1
n
) 2 / t n sin(
) 1 ) n (cos(
) 2 / t n cos(
)) 2 / n sin(
) 2 / n 3 (sin(
2 1
tncosn
t22
tnsinn
4dt
2
tnsint
ππ
=π
∫4
2
ncosn
22
nsinn
2
2
1a
Frms2 = 0.5Σbn2 = [1/(2π2)][(16/π2) + 1 + (16/(8π2)) + (1/4) + (16/(625π2))] = (1/19.729)(2.6211 + 0.27 + 0.00259)
Frms = 0.14659 = 0.3829
Compare this with the exact value of Frms = t dt 1/6
T
2 1 0
Trang 194dt)tncos(
)t(T
4
=
1
0 2
n
t)tncos(
n
1)tnsin(
n
14
−ππ
n
t)tnsin(
n
1)tncos(
1
k 2 2
) n sin(
n
4 ) n cos(
2
+π
− 2 cos(nt) ntsin(nt) 0n
2
= 4/(n2π)
−π
)ntsin(
)t(
Trang 201 ) nt cos(
2 / T 2 /
o t
o jn
T
1dte
)t(T
(b) The first term on the right hand side of (1) vanishes if f(t) is odd Hence,
Chapter 17, Solution 31
/T
2'T
2'/
T'T),t()
→
α
=α
0
o
'T
2tdt'ncos)t(h'T
2'a
Let αt=λ , dt =dλ/α, αT'=T
n T
0
o
n ( )cosn d / aT
2'
Similarly, bn'=bn
Trang 21Chapter 17, Solution 32
When is = 1 (DC component)
i = 1/(1 + 2) = 1/3 For n 1, ≥ ωn = 3n, Is = 1/n2∠0°
I = [1/(1 + 2 + jωn2)]Is = Is/(3 + j6n)
n41n
1)
3/n(tann13
0n1
2 2
1 2
2
−
∠+
=
∠+
+
1 n
1 2
2 cos( 3 n tan ( 2 n ))
n 4 1 n 3
1 3
1
Chapter 17, Solution 33
For the DC case, the inductor acts like a short, Vo = 0
For the AC case, we obtain the following:
s o
o o
s o
VVn
5n.2j1
04
Vjnnj
V10
VV
=
π+π+
−
)5n
.2(jn
4
n
5n.2j1
1n
4A
n
5n.2j1
VV
2 2 n
n
s o
−π+
π
=Θ
−
=
Θ
−π+
π
n
5n
.2tan
;)5n
.2(n
4
2 2 2 2
2 n
Trang 22A)
t(v
1 n
n n
=
Θ+π
tan)2/()4/n[(
4nn20
)n/)2n((
tan)2n(nn
)2/)4/n((
20
2 1 2
2
2 1 2
2 2 2
−
−π
−π
∠+
=
−
∠
−+
π
−π
2 1 2
2 n tan 2 4
n nt cos 4 n n 20
Trang 231
f 2 (t)
2
t -2 -1 0 1 2 3 4 5
Figure 17.57(b) For Prob 17.35 The signal is even, hence, bn = 0 In addition, T = 3, ωo = 2π/3
13
4
n
2)
3/n2sin(
n
6)
3/n2sin(
n
33
π
vs(t) = ∑∞
=
ππ
π
−
1 n
)3/tncos(
)3/n2sin(
n
1234
Now consider this circuit,
4(jn12
v9j
2 2
s
−π+
π
−
Trang 24For the dc case, n = 0 and vs = ¾ V and vo = vs/2 = 3/8 V
We can now solve for vo(t)
3
t n 2 cos A 8
3
1 n
π
ππ
n 2
3 3
n tan 90
and 6
3
n 4 n
16
) 3 / n 2 sin(
n
6
n 2
2 2 2
2 n
where we can further simplify An to this,
81 n
4 n
) 3 / n 2 sin(
9
4 4 n
+ππ
12
nsinn
1n
2 2 2 2
π+
π
=
ππ
+π
ωn = n and 2 H becomes jωnL = j2n Let Z = 1||j2n = j2n/(1 + j2n)
If Vo is the voltage at the non-reference node or across the 2-H inductor
Vo = ZVs/(1 + Z) = [j2n/(1 + j2n)]Vs/{1 + [j2n/(1 + j2n)]}
= j2nVs/(1 + j4n) But Vs = An∠−θn
Vo = j2n An∠−θn/(1 + j4n)
Trang 25nsin9n1
n4tan5.10010
−
io(t) = cos( nt 100 5 tan 4 n )
n 16 1
1 10
2
odd
n 1 n
1 2
+
1 k
),tnsin(
n
120
For the DC component, the capacitor acts like an open circuit
Vo = 5 For the nth harmonic,
Vs = [20/(nπ)]∠0°
10 mF becomes 1/(jωnC) = −j/(nπx10x10−3) = −j100/(nπ)
vo =
2 2
1 s
n25n
n
5tan90
100n
20100jn20
100j20
n
100j
Vn
100j
π+π
π+
°
−
∠
=π
−π
−
=+π
−π
π+π
n
5 tan 90
t n sin(
n 25 n
1
2 2
Trang 26=
1 k
n
122
1)t(v
π
=ωω
+
ω
j1
j
n
n o
1 o
1 2
2
o o
n1
ntan2
90n
2ntann
1
90nV
π+
•π
∠π+
∠π
−
1kn),ntantncos(
n1
2)
t(
+
1 k
),tnsin(
n
110
T = 2, ωo = 2π//T = π, ωn = nωo = nπ For the DC component, io = 5/(20 + 40) = 1/12
For the kth harmonic, Vs = (10/(nπ))∠0°
Trang 27Let Z = −j20/(nπ)||(40 + j0.1nπ) =
π+
+π
−
π+
π
−
n.0j40n
20j
)n.0j40(n
20j
=
)20n
.0(jn40
800jnn
.0jn4020j
n.0j40(20j
2 2 2
−π
=π+
π+
−
π+
−
Zin = 20 + Z =
)20n
.0(jn40
)1200n
(jn802
2 2
2 2
−π+
π
−π+
π
I =
)]
1200n
2(jn802[n
)200n
(jn400Z
V
2 2
2 2
in
s
−π+
ππ
−π+π
=
Io =
)20n
.0(jn40
I20j)
n.0j40(n
20j
In
20j
2
2π −+
π
−
=π+
+π
2(jn802[n
200j
2
2π −+
ππ
−
=
2 2
2 2
2 2 1
)1200n
()802(n
)}
n802/(
)1200n
{(
tan90
200
−π+π
π
−π
+
1 k
n
n sin( n t ) I
200 20
°
=
n802
1200n
2tan90
2 2 1 n
In =
)1200n
()n804(n
1
2 2
π
Trang 281
0
2 1
0
T
0v(t)cos(n t)dt 2(1 t)cos(n t)dtT
2
=
1
0 2
n
t)tncos(
n
1)tnsin(
n
12
−ππ
=
2 2
2 2 2
2
)1n(
4odd
n,n4
evenn
,0)ncos1(n
2
−π
=
=π
=
=π
−π
0
T
0v(t)sin(n t)dt 2 (1 t)sin(n t)dtT
−ππ
−
n
2)
tncos(
n
t)tnsin(
n
1)tncos(
n
12
1
0 2
2 1
n
)1n(
16n
4A
,n2
)1n(
−π
+π
=
−π
−
tan
=φ
For the DC component, vs = 1/2 As shown in Figure (a), the capacitor acts like an open circuit
Trang 29Vo = 3i = 0.75 For the nth harmonic, we consider the circuit in Figure (b)
ωn = nπ, Vs = An∠–φ, 1/(jωnC) = –j4/(nπ)
At the supernode,
(Vs – Vx)/1 = –[nπ/(j4)]Vx + Vo/3
Vs = [1 + jnπ/4]Vx + Vo/3 (3) But –Vx – 2Vx + Vo = 0 or Vo = 3Vx
Substituting this into (3),
Vs = [1 + jnπ/4]Vx + Vx = [2 + jnπ/4]Vx = (1/3)[2 + jnπ/4]Vo = (1/12)[8 + jnπ]Vo
Vo = 12Vs/(8 + jnπ) =
)8/n(tann
64
A12
1 2
2
n
π
∠π+
16n
4n
64
4 4
2 2 2
−π
+ππ
+
−
−
Trang 30Thus
vo(t) = ∑∞
=
θ+π+
1 n
n
n cos( n t ) V
4 3
2
2 ( 2 n 1 )
16 n
4 n
64
12
−π
+ππ
14
2
For the DC component,
Vin = 2/π The inductor acts like a short-circuit, while the capacitor acts like an open circuit
Vo = Vin = 2/π For the nth harmonic,
Vin = [–4/(π(4n2 – 1))]∠0°
2 H becomes jωnL = j4n 0.1 F becomes 1/(jωnC) = –j5/n
°
∠
−
−+
−
)1n4(
04)
10n(j4
10j
2
Trang 31=
2 2
1
)10n(16)1n4(
)}
5.2n2(tan90{40
−+
−π
π n 1 A n cos( 2 nt n ) 2
where
An =
29 n 40 n 16 ) 1 n 4 (
+
=
1 k
s sinn , n 2k-1
n
1205
v
π
=ω
=ωω
=
→
−ω
=
−
nn
,VRC
jV
)V0(CjR
0
V
o n
s n o o
n s
For n = 0 (dc component), Vo=0
For the nth harmonic,
2 2
5 9
4 2 2 o
o o
n
1010
x40x10xn
2090
n
20RCn
901V
π
=π
=
−
∠ππ
10)t(v
Alternatively, we notice that this is an integrator so that
∑
=
=ππ
n
12
10dtvRC
1)t(v
Trang 32Chapter 17, Solution 43
2
130)
ba(2
1
1 n
2 n
2 n
Trang 33Z = R + jωnL + 1/(jωnC) = 10 + j2n – j25/n
I = V/Z For n = 1, V1 = 100, Z = 10 + j2 – j25 = 10 – j23
3
1 n
n n n
V21
0
T
2dt)t(fT1
f(t) =
2t1,0
1t0,22
0
2dt 2(t t t /3))
t1(44
Trang 346416642
14
1A
2
1
1 n
2 n
≅+ ∑∞
Trang 35Z = 2||(–j/n) = 2(–j/n)/(2 – j/n) = –j2/(2n – j)
V = ZI = [–j2/(2n – j)]I For n = 1, V1 = [–j2/(2 – j)]16∠45° = 14.311∠–18.43° mV
1 n
n n n
V21
= 20x40 + 0.5x10x0.014311cos(45° + 18.43°) +0.5x12x0.005821cos(–60° + 135.96°)
= 800.1 mW Chapter 17, Solution 49
2
1dt4dt12
1dt)t(zT
1Z
0
2 T
0
2 rms
=
π
581.1
Zrms =(b)
9193.2
25
116
19
14
1118
14
1n
362
14
1)ba(2
1a
2 o
=π+
=+
rms =Z
Trang 36Chapter 17, Solution 50
nt j
1
n,
dte)t(T
Using integration by parts,
1 1 t jn 1
1
t
jn2
1e
jn2
jn
)j(n2
1e
en
j
−
π
− π
π
−
−π++
+π
−
n
)1(j)nsin(
n2
j2n
)1
2 2
n
jThus
f(t) = ∑∞
−∞
=
ω n
t jn
n e n
j ) 1 (
Chapter 17, Solution 51
π
=π
=ω
0 T
0
2 2 2 2
t jn t
jn 2 t
o jn
)jn(
e2
1dte
t2
1dte
)t(T
2)n4jn
(n
−π
=
n
t jn 2
n
2)
t
(
Trang 37Chapter 17, Solution 52
nt j
1
n,
dte)t(T
Using integration by parts,
1 1 t jn 1
1
t
jn2
1e
jn2
jn
)j(n2
1e
en
j
−
π
− π
π
−
−π++
+π
−
n
)1(j)nsin(
n2
j2n
)1
2 2
n
jThus
f(t) = ∑∞
−∞
=
ω n
t jn
n e n
j ) 1 (
0
t jn
nj1
1e
n2j1
0
t n j 1
π+
−
=π
n
t n 2 j
n 2 j 1
e 6321 0
Trang 382 / jn 1
0
2 /
e241
= [ − π − + − π − − π − − π + − π]
π
jn n
j 2 / jn jn
2 /
e2n2j
= [ − π − + − π]
π
jn 2
/
e3n2j
f(t) = ∑∞
−∞
=
ω n
t jn
ne oc
0
t0),tsin(
t
j2
12
1dte)tsin(
21
=
+ π
−
− π
π +
−
−
n1
1e
n1
1e
41
)n1(j
e)n1(j
ej41
) 1 n ( )
n 1 (
0
) n 1 ( jt )
n 1 ( jt
Trang 39[e 1 ne n e 1 ne n]
)1n(4
−π
But ejπ = cos(π) + jsin(π) = –1 = e–jπ
)n1(2
e12ne
nee
e)1n(4
1
2
jn jn
jn jn
−
−
−
−π
π
− π
− π
− π
− π
−
−π
+
n
t jn 2
jn
e ) n 1 ( 2
e 1
0 n n
t jn
2 e ) 1 n ( 2
) jn 1 ( 10
nt 50 j
3 e 2 n
3 3
) n cos(
j n
2
1 ) n cos(
4
Trang 40+
0 n n
t ) 1 n 2 (
) 1 n 2 (
e 5 j 2
= 6 + 4cos(t)cos(50°) – 4sin(t)sin(50°) + 2cos(2t)cos(35°)
– 2sin(2t)sin(35°) + cos(3t)cos(25°) – sin(3t)sin(25°) + 0.5cos(4t)cos(20°) – 0.5sin(4t)sin(20°)
= 6 + 2.571cos(t) – 3.73sin(t) + 1.635cos(2t)
– 1.147sin(2t) + 0.906cos(3t) – 0.423sin(3t) + 0.47cos(4t) – 0.171sin(4t)
Trang 41(b) frms = ∑∞
=
+
1 n
2 n
2
2
1a
/220
o = = π → = π=
ω
(b) f(t) a A cos(n t ) 3 4cos(20t 90 ) 5.1cos(40t 90o)
1 n
o n
o n
1t0,1
2 / T
3
2dt)t(T
2 / T
3
4dt)tncos(
)t(T4
5 1
1
1
tn2sinn
63
tn2sinn
334
= [–2/(nπ)]sin(2nπ/3)
Trang 421
tn2cos3
nsinn
1234
=+
3
nsinn
2
b2 n
2 n
a
A1 = 0.5513, A2 = 0.2757, A3 = 0, A4 = 0.1375, A5 = 0.1103 The amplitude spectra are shown below
1.333
0.1103 0.1378
0 0.275 0.551
4 3 2
Trang 43π
+π
=+
2 n
a
= 2 2
n
44.441n
Trang 44φn = tan–1(bn/an) = tan–1{[–3/(nπ)][n2π2/20]} = tan–1(–nx0.4712)
The schematic is shown below The waveform is inputted using the attributes of
VPULSE In the Transient dialog box, we enter Print Step = 0.05, Final Time = 12, Center Frequency = 0.5, Output Vars = V(1) and click enable Fourier After simulation, the output plot is shown below The output file includes the following Fourier
components