The s-domain form of the circuit is shown below... We first find the initial conditions from the circuit in Fig... We first need to find the initial conditions... Consider the following
Trang 1s
2 2
2
)23()21s(
11
ss
1s
1s1
s1)
s
(
++
=++
=++
2)
Trang 22e
24(v
3
8j3
4s
125.03
8j3
4s
125.0s
25.016)8s8s3(s
2s16V
s
32s16)8s8s3(V
0VsV)s4s2(s
)32s16()8s4(V
0s
84
0V2
0Vs
s
4V
t ) 9428 0 j 3333 1 ( t
) 9428 0 j 3333 1 ( x
2 x
2 x
x
2 x
2 x
x x
x
−
− +
−++
+
−+
−
=++
=+
++
+
−+
=+
−+
−+
−
3
22sine
2
6t3
22cose
)t(
5s
1610
5s
8
12
1 2
1s
58
1
Vo
+
=+
=
vo(t) = 0.3125(1−e−0.625t)u(t) V
Trang 3Chapter 16, Solution 4
The s-domain form of the circuit is shown below
10/s 1/(s + 1) +
−
+
V o (s)
−Using voltage division,
+
=
1s
110s6s
101
s
1s106s
s10)
s
(
10s6s
CBs1
s
A)10s6s)(
1s(
10)
s
(
++
++
+
=+++
=
)1s(C)ss(B)10s6s(A
2 2
41
)3s(
)3s(21s
210s6s
10s21s
2)
s
(
V
++
−++
+
−+
=++
+
−+
s
1+
2
I o
s
Trang 4( )
(e 0.7559sin1.3229t)u(t)A
or
A)t(ue
ee3779.0e
ee3779.0e
)646.2j)(
3229.1j5.1(
)3229.1j5.0(3229
.1j5.0s
)646.2j)(
3229.1j5
1
(
)3229.1j5.0(
2
s
1
)3229.1j5.0s)(
3229.1j5.0s)(
2s
(
s2
Vs
I
)3229.1j5.0s)(
3229.1j5.0s)(
2s(
s22
ss
s22s12
s2
1s
1
12
3229 1 j 2 / 90 t
2
o
2 2
2 o
2
−
=
++
=
−+
++
+
−++
+
=
−++
++
=
=
−++
++
5+
5t3cos
53
)1s(
)1s(510s2s
s52
s5s
o
2 2 2
2 2
−++
+
=++
=++
+
+
=
Trang 5)s2(s
11s
=++
=+
+
=+
=
)5.0ss(
CBs)
1s(
A)5.0ss)(
1s(
1s21
s2s2
s21x1
++
+
=+++
+
=++
++
=
=
)1s(C)ss(B)5.0ss
2CC
2CBA0
:
-4B ,6A3
0.5A
or CA5.01:
2 2
2 x
866.0)5.0s(
)5.0s(41
s
675.0)5.0s
(
2s41
s
6
I
++
+
−+
=+
Trang 6Chapter 16, Solution 8
(a)
)1s(s
1s5.1ss22
)s21(s
1)s21//(
1s
1
+
++
=+
++
=++
=
(b)
)1s(s2
2s3s3s
11
1s
12
1Z
+
++
=+
++
=
2s3s3
)1s(s2
++
+
=+
=
s1s2
)s1s(2)s1s(
||
2
Zin
1 s 2 s
) 1 s ( 2
2
2
+++
)2s(2s23
)s21(2)s21(
+
=+
2s3
6s5)s21(
||
21
+
+
=++
++
+
=
2s3
6s5s
2s3
6s5s2s3
6s5
||
s
Zin
6 s 7 s 3
) 6 s 5 ( s
2 + ++
Trang 7+
s3
)1s2(Vs
/12
Vs
=
+
+
s3
)1s2(1
4V
2
VV
Trang 8But V 0
s
1V2
Vy+ o• + o =
−
)1s(s3
)2s(4s
2s)1s(3
4)
s
21(V
−
=+
42
-22
s
4
-++
I2s2-
2-s422)(s
4
-s1
)4s2s(s
2 2
++
=
)2s(s
4s4
2 =
∆
4s2s
CBs2
s
A)4s2s)(
2s(
)4s4s(21
2 1
+++
=+++
Trang 9s : 2=4A+2C
Solving these equations leads to A 2= , B=-3 2, C=-3
2 2
1
)3()1s(
3s23-2s
2I
++
−+
+
=
2 2
2 2
1
)3()1s(
33
2
3-)3()1s(
)1s(2
3-2s
2I
++
⋅++
+
+
⋅++
2
2 2
)3()1s(
3-)
4s2s(2
ss
6-I
++
=++
o
sV24
Vs
3s
V1
s
10
+
=+
−
+
1s
15s1510151s
10V)ss25
=++
=+
+
1s25.0s
CBs1
s
A)1s25.0s)(
1s(
25s15
++
++
+
=++
+
+
=
Trang 1040V
)1s
(
A= + o s=-1 =
)1s(C)ss(B)1s25.0s(A25
4
32
1s233
271554
32
1s2
1s7
401s
17404
32
1s
7
135s7
40-1s
+
−+
=+
++
7(
)2)(
155(t2
3cose7
40e7
40)
o
V1s2
1ss12
V1s2
V2s
1
+
+
=+
++
=+
Trang 111s(
1s2
Vo
++
+
=
2s
B1s
A)2s)(
1s(
11
s2
V
+
++
=++
=+
=
1
A= , B= -1
2s
11s
1
Io
+
−+
=
=)t(
io (e -t −e -2t)u ( ) A Chapter 16, Solution 14
We first find the initial conditions from the circuit in Fig (a)
0Vs
5s2
V1
s15
=+
−+++
−
Trang 12V)1s(4
ss2
11s
=
−
o
2 o
2 2
V)1s(s4
2s6s5V)
1s(s4
s2s2s4s4
s
10
+
++
=+
++++
=
2s6s5
)1s(40
++
+
=
s
5)4.0s2.1s(s
)1s(4s
5s2
V
++
+
=+
=
4.0s2.1s
CBss
As
5
++
++
+
=
sCsB)4.0s2.1s(A)1
8s10s
10s
5
++
+
−+
=
2 2 2
2
)2.0(102
.0)6.0s(
)6.0s(10s
15
I
++
−++
5+
Trang 135VV2s
5VV,But
2s
s5V120V
)40ss2(02s
s5sVVs2V120V
40
010
2s
5Vs/5
0V4
/s
V3V
x o o
x
x o
2 o
o
2 x o
o o
x o
++
=
→+
+
=
=+
−++
−
=+
−+
−+
−
We can now solve for Vx
)40s5.0s)(
2s(
)20s(5
V
2s
)20s(10V
)40s5.0s(2
02s
s5V1202
s
5V)40ss2(
2
2 x
2 x
2
x x
2
−++
=+
+
Chapter 16, Solution 16
We first need to find the initial conditions For t<0, the circuit is shown in Fig (a)
To dc, the capacitor acts like an open circuit and the inductor acts like a short circuit
Trang 14Hence,
A1-3
3-i)
0
(
iL = o = = , Vvo =-1
V5.22
1-)1-)(
2()
2
-1 V 5/(s + 2)
(b)
For mesh 1,
02
Vs
5.2Is
1Is
122
+
But, Vo =Io =I2
s
5.22s
5Is
12
1Is
5.22
V1Is
1Is
1s
5.2Is
1s2
1I
Trang 15Put (1) and (2) in matrix form
−+
1s
5.2s
5.22s5
I
I
s
1s2
1s
1
-s
12
1s
1
2
2 1
s
32s
2 + +
=
)2s(s
5s
42-
2 = + + +
∆
3s2s2
CBs2
s
A)3s2s2)(
2s(
132s-I
2 2
2
++
+
=+++
0
5.1ss
714.2s7145.12s
7143.03s2s2
429.5s429.32s
7143.0
++
−
−+
=++
−
−+
=
25.1)5.0s(
)25.1)(
194.3(25.1)5.0s(
)5.0s(7145.12s
7143.0
++
+++
+
−+
Trang 161s1
s
2
2 1
For the supermesh,
0Iss
1Is1(Is
−++
1sIs
1s
1s
2s
4-Is
1sIs
24I
12
I2
+
−
=
Trang 17=i (t))
t(
es
1t(u)e
22()t(u)e22[(
2s
2)e1()5.1s(s
3V
VV)5.1s(02
VsV1
V
V
) 1 t ( 5 1 t
5 1 o
s s
o
s o
o o s o
−
=
−+
=
=
→
=++
+
−
2
2 4/(s + 2)
Trang 18At the supernode,
o 1
s
1s
V22
V)2s
(
4
++
=+
−+
o
s
1Vs
12
122
s
2
++
=+
But and Vo =V1+2I
s
1V
=
2s
2Vss)2s(
s2VVs
)1V(2V
1
1 1
−
=+
2V2s
ss
1s2s
122
+
oVs2s
1s2)2s(s
)1s2(2s
122
+
=+
++
−+
+
o
2 2
V2s
1s4s2s
9s2)2
s
(
s
s9s
2
+
++
=+
+
=+
+
732.3s
B2679
.0s
A1
s4s
9s2
Vo 2
+
++
=++
+
=
443
2
732.3s
4434.02679.0s
443.2
Vo
+
−+
Trang 19Vs
11
Vs2)1
s
(
++
=+
−
−+
s
1sV)s1s)(
1s(Vs21
s
s
o o
+++
1s1
s
s
++
1s(
1s4s2-
CBs1
s
A)5.0ss)(
1s(
5.0s2s-
++
++
+
=+++
−
−
=
1V
)1s
(
A= + o s=-1=
)1s(C)ss(B)5.0ss(A5.0s2
2
)5.0s(21
s
15.0ss
1s21s
1V
++
+
−+
=++
+
−+
Trang 20V V
V
2()1(102
1
10
2 1 1
1
−++
=
→
+
(2
2 1
o
Substituting (2) into (1) gives
o o
V s
s
2()12/)(
1
(
5.12)
5.12
=++
=
s s
C Bs s
A s
s
s
V o
Cs Bs s
C A
-40/3C
-20/3,B
,3/205
.110:
−+
+
−
7071.0)1(
7071.0414
.17071.0)1(
11
3
205.12
21
3
20
s s
s s
s s
s s
Trang 2111V1s
12s
4
VV1
V1
s
1 2
→
−+
=
−
1s2s3
4VVV
3
s2
Vs
4
V
2 1 2
2 2
Substituting (2) into (1),
2 2
2
2
3s3
7s3
4s4
1s4
111s2s3
4V1s
)8
9s4
7s(
CBs)
1s(
A)8
9s4
7s)(
1s(
9V
2 2
2
++
++
+
=+++
=
)1s(C)ss(B)8
9s4
7s(
A
Equating coefficients:
BA0:
A4
3CC
A4
3CBA4
70:
-18C -24,B ,24AA
8
3CA8
99:
Trang 2223)8
7s(
364
23)8
7s(
)8/7s(24)1s(
24)
8
9s4
7s(
18s24)
1s(
24V
2 2
2
2
++
+++
+
−+
=++
+
−+
=
Taking the inverse of this produces:
[24e 24e cos(0.5995t) 5.004e sin(0.5995t)]u(t))
9s4
7s(
FEs)
1s(
D)8
9s4
7s)(
1s(
1s2s3
49V
2 2
2 1
++
++
+
=+++
9s4
7s(D1s2s
D4
36FF
D4
36
or FED4
718:
0F 4,E ,8DD
8
33
or FD8
99:
64
23)8
7s(
2/764
23)8
7s(
)8/7s(4)1s(
8)8
9s4
7s(
s4)
1s(
8V
2 2
2
1
++
−++
++
+
=++
++
1/sC
sL
Trang 23At the non-reference node,
sCVsL
VR
VC5s
2s
4
++
=++
=
+
LC
1RC
sss
CVs
sC5
LC1RCss
C6s5
++
+
=
8010
1RC
1
=
804
1LC
1
=
=
2 2 2
2
)2)(
230(2)4s(
)4s(520s8s
480s5V
++
+++
+
=++
+
=
=)t(
v 5 e -4t cos( 2 )+230 e -4t sin( 2 ) V
)20s8s(s4
480s5sL
V
++
+
=
=
20s8s
CBss
A)20s8s(s
120s25.1
++
++
=++
2
)2)(375.11(2)4s(
)4s(6s
620s8s
75.46s6s
6I
++
−++
+
−
=++
+
−
=
=)t(
i 6 u ( )−6 e -4t cos( 2 )−11 375 e -4t sin( 2 t ), t >0
Trang 24-
20)9(54
4x5)0(
+
=
For t > 0, we have the Laplace transform of the circuit as shown below after
transforming the current source to a voltage source
Bs
A)5.0s(s
s206.3V5
V2
sV10
20
V
36
o o
o
++
=+
+
=
→
+
=+
−
Thus,
[7.2 12.8e ]u(t))
t(
vo = − −0.5t
Trang 259s616
−
)16s)(
9s6s
(
32s4
2++
+
+
=
)16s()3s(s
288s
36s
2s
2Is
9
2++
++
=+
=
16s
EDs)3s(
C3
s
Bs
As
2
2
+++
++++
=
)s48s16s3s(B)144s96s25s6s(A288s
)s9s6s(E)s9s6s(D)s16s(
C 3+ + 4+ 3+ 2 + 3+ 2++
Trang 26)4)(
6912.0(16s
s2016.0)3s(
16.83s
7984.1s
4)
−+
−+
V s
At node 0,
sC)V0(R
V0R
0V
o 2
o 1
s− = − + −
( )o
2 1
R
1R
=
2 1 1 s
o
RRCsR
1-V
R2
1 = = , R C (20 103)(50 10- 6) 1
So,
2s
1-V
Vs
o+
=
)5s(3Ve
3
Trang 273-
Vo
++
=
5s
B2s
A5)2)(s(s
3V
- o
+
++
=++
=
1
A= , B= -1
2s
15s
1
Vo
+
−+
=
=)t(
vo (e -5t −e -2t)u ( ) Chapter 16, Solution 27
Consider the following circuit
1 I sII
s21(3s
10
−
−+
=+
2
1 (1 s II
s21(3s
10
+
−+
=
For mesh 2,
1 1
2 I sII
s22(
2
1 2(s 1 II
s1(
++
I)1s(2)1s(
)1s(1s20
)3s(10
1s4s
3 2+ +
=
∆
Trang 28)1s(20
)1s(10
+
=
∆Thus
=
∆
∆
= 1 1I
) 1 s 4 s 3 )(
3 s (
) 1 s ( 20
) 1 s 4 s 3 )(
3 s (
) 1 s ( 10
2 + ++
6
++
For mesh 2,
2
1 (2 s II
Substituting (2) into (1) gives
2
2 2
s
2)5s(s-IsIs
212s)-(1s
=+
=
or
2s5s
6-
I2 2
++
=
Trang 29(s
12-2
s5s
12-I
2
++
=++
=
=
Since the roots of s2+5s+2=0 are -0.438 and -4.561,
561.4s
B438
.0s
A
Vo
+
++
=
-2.914.123
12-
4.123-
12-
561.4s
91.20.438s
2.91-)s(
Vo
+
++
=
=)t(
vo 2 91[e -4.561t −e 0 438 t]u ( ) V Chapter 16, Solution 29
Consider the following circuit
8s48
)s4)(
8(s
=
=
When this is reflected to the primary side,
2n,n
Z1
1s2
3s21s2
21
Zin
+
+
=++
=
3s2
1s21s
10Z
11s
10I
in
+
⋅+
=
⋅+
=
Trang 30B1s
A)5.1s)(
1s(
5s10
Io
+
++
=++
201s
10-)s(
Io
+
++
=
=)t(
io 10[2 e -1.5t −e−t]u ( ) A Chapter 16, Solution 30
)s(X)s(H)
s
(
1s3
1231s
4)s(X
+
=+
=
2 2
2
)1s3(
34s83
4)1s3(
s12)
=
2
2 (s 13)
127
4)31s(
s9
83
4)
s9
8-)s(
+
⋅
=G
Using the time differentiation property,
8-)et(dt
d9
8-)t(g
3 t - 3 t
9
8et27
8)t(
Hence,
3 t - 3
t - 3 t
27
4e
9
8et27
8)t(u3
4)t(
=)t(
27
4 e
9
8 ) ( u 3
4
+
−
Trang 31Chapter 16, Solution 31
s
1)s(X)
t(u)
t
(
4s
s10)s(Y)
t2cos(
10)
)s(Y)
s
(
H
4 s
s 10
3s
++
+
=
5s4s
CBss
A)5s4s(s
3s
2
++
=++
+
=
CsBs)5s4s(A3
s+ = 2+ + + 2+Equating coefficients : 0
s : 3=5A → A=3 51
s : 1=4A+C → C=1−4A=- 7 52
s : 0=A+B → B=-A=-3 5
5s4s
7s35
1s
53)s(
++
1)2s(35
1s
6.0)s(
++
++
⋅
−
=
=)t(
y [0 6−0 6 e -2t cos( )−0 2 e -2t sin( )]u ( )
Trang 32(b) - 2t 2
)2s(
6)
s(Xe
t6)t(x
3s)s(X)s(H)s(Y
+
⋅++
+
=
=
5s4s
DCs)
2s(
B2
s
A)5s4s()2s(
)3s(6)
s(
++
+++
++
=+++
+
=
Equating coefficients : 3
2
s : 0=6A+B+4C+D=2A+B+D (2) 1
s : 6=13A+4B+4C+4D=9A+4B+4D (3) 0
18s6)2s(
62s
6)s(
++
+
−+
++
=
1)2s(
61
)2s(
)2s(6)2s(
62s
6)s(
++
−++
+
−+
++
=
=)t(
y [6 e -2t +6 t e -2t −6 e -2t cos( )−6 e -2t sin( )]u ( ) Chapter 16, Solution 33
)s(X
)s(Y)
16)2s(
)4)(
3(16)2s(
s2)
3s(2
1s
4)
s
(
++
−++
−++
s 12 20
s 4 s
s 2 )
3 s ( 2
s
2
++
−++
−++
Trang 33V2s
V
+
=+
−
o
2 o
10
1)2s(4
11V10
s4
12s
1)2s(
++
=
s 2s 9s 30 V20
1
=s
oV
V
30 s 9 s 2
VII
VV
I s− 1
=
Trang 34Vs
2
VV
2
s3V2
s33s
V
−
=+
s
2
s3V2
s33s
s 2
2s9s3
)3s(s3V
++
+
=
s 2
1
2s9s3
s9V
3s
3V
++
=+
=
=
=s
oV
V)s(H
2 s 9 s 3
s 9
2+ +
Chapter 16, Solution 36
From the previous problem,
s 2
2s9s3
s33
s
VI3
++
=+
=
s
2s9s3
sI
++
2s9s3
=
2 2
o o
V)s(
Trang 352Is
23
For loop 2,
0Is
2Is
2s2V
Vx 1 2
s
2Is
2s2)IIs
8
1 2 2
−
2
1 2s Is
6Is
6-
I
Is2s6s6-
s2-s230V
=
∆
s
2s
6s2s
6s
23
4s6s
Trang 361
s64s18
)s2s6(I
ss3V
I
s
1
9 s 2 s 3
3 s
2
2
−+
2)IIs
2V
=
=
s
s x
2
4V-
Vs6V
I
2s
3 -
V
1 1
s
1Vs
1s1
Trang 37At node o,
o o
o o
1 sV V (s 1)Vs
VV
+
=+
2
s (s 1 1s)(s s 1)V 1sV
o 2
2 s 3 s 2 s
3 1 s
s V V (s 2s 3s 2)V (s s 1)V
o 2
1 s 2 s s
I)s(
s
o s
I)s
s
o s
o 4
H
2 s 3 s 2 s
V s
Trang 38Since no current enters the op amp, flows through both R and C Io
=
sC
1RI
Vo o
sC
IVV
sC1RV
V)s(H
LRsLR
RV
V)s(H
s
o
+
=+
=
=
=)t(
Bs
A)LRs(s
LRV
LRs
LR
++
=+
=+
=
1
A= , B= -1
LRs
1s
t(
o ( 1−e -Rt L ) u ( )
Chapter 16, Solution 41
)s(X)s(H)
s
(
1s
2)s(H)
t(ue2)
Trang 39t(u5)
t
(
1s
Bs
A)1s(s
10)
s
(
Y
++
=+
=
10
1s
10s
10)
s
2
)21s(2
11
s2
1)s(X
)s(Y)
C 'i 0; i vv
i)t(
−
Trang 40Thus,
)t(uivi
iv
C '
' C
;)t(u1
0i
v11
10i
)t(
x x
L C
' C C
' C C
' C
' C x L
i3333.1v3333.0vor
;v2i4v2
vv8
v4v
v
v)t(ui
vi8vor
;08
v2
vi
+
=
−+
=+
=+
−
L C
' L
L C
L C
L
' C
i3333.1v3333.0)t(ui
i666.2v3333.1i
333.5v3333.1i8v
L
C '
L
' C
i
v3333.1
3333.0v
;)t(u4
0i
v3333.13333.0
666.23333.1i
v
Trang 41Chapter 16, Solution 45
First select the inductor current iL (current flowing left to right) and the capacitor voltage
vC (voltage positive on the left and negative on the right) to be the state variables
Applying KCL we get:
2 o
'
L
o L
' C L
o
'
C
vv
i
vi4vor0i2
v4
−
1 C
2 1 C
'
L
1 C L
'
C
vvvi
v2vi4
v
−+
)t(v01v
i10)t(v
;)t(v
)t(v02
11v
i24
10v
i
2
1 C
L o
2
1 C
L C
L
Chapter 16, Solution 46
Trang 42First select the inductor current iL (left to right) and the capacitor voltage vC to be the state variables
Letting vo = vC and applying KCL we get:
s C
' L
s L C
' C s
C ' C L
vvi
iiv25.0v
or0i4
vvi
+
−
=
++
−
=
=
−++
C o
s
s '
L
' C '
L
' C
i
v00
00i
v0
1)t(v
;i
v01
10i
v01
125.0i
' C L
' C C
4
v2v
+
−
Loop 2:
2 1 C 2
1 C L L
'
L
2
' L
' C L
vvvv2
v2v2i4i2i
or0vi4
vi
2
−+
−
=
−+
−+
−
=
=++
Trang 431 C
L 1 C L
4
vv2i
)t(v00
05.0v
i01
5.01)t(i
)t(i
;)t(v
)t(v02
11v
i24
10
v
i
2
1 C
L 2
1 2
1 C
L C
L
Chapter 16, Solution 48
Let x1 = y(t) Thus, x1' =y' =x2 and x'2 =y′′=− x1−4x2 +z(t)
This gives our state equations
[ ] [ ]0z(t)x
x01)t(y
;)t(z1
0x
x43
10x
x
2
1 2
1 '
Thus,
z3xxz
z2z)zx(5xz
y
x'2 = ′′− ' =− 1− 2 + + '+ − ' =− 1− 2 −This now leads to our state equations,
[ ] [ ]0 z(t)x
x01)t(y
;)t(z3
1x
x56
10x
x
2
1 2
1 '
x"3=− 1− 2− 3+
We can now write our state equations
[ ] [ ]0 z(t)
xx
x001)t(y
;)t(z100x
xx6116
100
010x
xx
3 2 1 3
2 1 '
3
' 2
' 1
Trang 44−
s
1B)s(AX)0(x)s(sX
Assume the initial conditions are zero
04s2
4s8s4s
1s
12
0s
2
44s)s(X
s
1B)s(X)AsI(
2 1
2 2 2
2 2
2
2 2
1
2)2s(
22
)2s(
)2s(s
12)2s(
4ss
1
8s4s
4ss
1)8s4s(s
8)
s(X)s(Y
++
−+
++
+
−+
=++
−
−+
=
++
−
−+
=++
s/32s2
14s10s6s
1s
/2
s/104
114s2
12s)s(X
2 1
2 2 2
2 1
1)3s(
8.1s8.0s
8.0)1)3s((
s
8s3X
++
−
−+
=++
+
=
1)3s(
16
.1)3s(
3s8.0s
8.0
++
+++
+
−
=
)t(u)tsine6.0tcose
8.08.0()t(
Trang 452 2 2
2 2
1)3s(
4.4s4.1s
4.11)3s((
s
14s4X
++
−
−+
=++
+
=
2 2 2
12
.01)3s(
3s4.1s
4.1
++
−++
+
−
=
)t(u)tsine2.0tcose
4.14.1()t(
)t(u)tsine8.0tcose
4.44.2(
)t(u2)t(x2)t(x)t(y
t 3 t
3 2 1
8.02.1()t(u)t(x)t(
o
sL
1sCR
1sL
VVsCR
=++
=
RLCsRsL
IsRLsL
1sCR1
I
RsLRLCs
IsLR
V
LC1RCss
RCsR
sLRLCs
sLI
I)s(
s
o
++
=++
=
=The roots
LC
1)RC2(
1RC
2
1-
s1,2 = ± 2 −
both lie in the left half plane since R, L, and C are positive quantities
Thus, the circuit is stable
Trang 46Chapter 16, Solution 54
(a)
1s
3)s(
H1
+
4s
1)s(
H2
+
=
)4s)(
1s(
3)
s(H)s(H)s(
++
=
=
4s
B1s
A)
s(H)
t(
h L- 1 L- 1
1
A= , B= -1
=)t(
sC1V
Vs
V1
=
2 2 2 s
o
CRs
1V
V)s(
2
2CR
t)t(
t , i.e the output is unbounded
Hence, the circuit is unstable
Trang 47Chapter 16, Solution 56
LCs1sLsC
1sLsC
1sLsC
⋅
=
RsLRLCssLLC
s1
sLR
LCs1sLV
V
2 2
2 1
2
++
=+
1ss
RC
1sV
V2 1
2
+
⋅+
1
=
=C6
sLRsC
1sLR
)sLR()sC1()sLR(
2 2
2
+
=+
+
+
⋅
=+
=
Trang 48i 1
ZR
ZV
+
=
i 1 2
2 1
2
2
ZR
ZsLR
RV
sLR
RV
+
⋅+
=+
=
CsRLCs1
sLRR
CsRLCs1
sLRsL
R
RZ
R
ZsLR
RV
V
2 2
2 1
2 2
2
2
2 1
2
2 i
o
++
++
++
+
⋅+
=+
⋅+
=
sLRRCRsRLCRs
RV
V
2 1 2 1 1
2
2 i
o
++++
=
LCR
RRCR
1L
Rss
LCRRV
V
1
2 1 1
2 2
1 2
i
o
++
=
Comparing this with the given transfer function,
LCR
1L
R6
1
2 +
=
LCR
RR25
4
1
C4
1L
1
20
1LCLC
4
1C20
Thus,
20
1,4
1
C=
Trang 49V0(Y)0V( s − 3 = − o 1− 2
o 2 1 s
3V (Y Y )V
2 1
3 s
o
YY
Y-V
1 2 1
1
2 s
o
CR1s
CsC-R1sC
sC-V
V
+
=+
=
Comparing this with the given transfer function,
1C
C
1
CR
11 1
Trang 50in V )Y (V V )Y (V V )Y
V
)YY(V)YYY(VY
At node 2,
3 o
2 o
1 V )Y (V 0)Y
V
o 3 2 2
1Y (Y Y )V
o 2
3 2
Y
YY
Substituting (2) into (1),
)YY(VV)YYY(Y
YYY
2
3 2 1
)YYYYYYYYYYYYYY(VY
Y
2 4 3 3 2 3 1 4 2
2 2 2 1 o 2 1
4 3 3 2 3 1 2 1
2 1 in
o
YYYYYYYY
YYV
V
++
Y = , Y3 =sC1, Y4 =sC2
Trang 512 1 2 2
1 1
1 2 1
2 1 in
o
CCsR
sCR
sCRR1
RR1V
V
+++
=
2 1 2 1 2 2 1
2 1 2
2 1 2 1 in
o
CCRR
1C
RR
RRss
CCRR1V
=
Choose R1 = k1 Ω, then
6 2 1 2
1
10CC
RR
2 2 1
2
R+
We have three equations and four unknowns Thus, there is a family of solutions One such solution is
=
2
R 1 kΩ, C1 = 50 nF, C2 =20 µ F
Trang 58V
3 2 1 4 3 2
2 1 i
o
+++
=
Trang 59R2sC(sCR1
RsC-V
V
1 1 1
2
1 1 1
1 2
2 1
1 1 i
o
++
=+
+
=
1RC2sRCCs
RsC-V
V
1 2
2 1 2 1 2
1 1 i
o
+
⋅+
=
1)10)(1010(1)2(s)10)(1010)(110(0.5s
)10)(1010(0.5s-V
V
3 6
2
-3 6
6
2
-3 -6
i
o
102s400s
s100-V
V
×++
)1s(K)s(Y
+
+
=
Ks31
)s11(Klim3
s
)1s(Klim)(Y
Hence, Y(s)=
) 3 s ( 4
1 s
++
(b) Consider the circuit shown below
Trang 60t(u8
)3s(s
)1s(23s
1ss4
8)s(V)s(YZ
Bs
AI
++
=
32
=)t(
i [2 4 e ]u ( ) A 3
R
R-
i 1
sCR
1VR
sC1-
CsR
VR
V
o = =
CsRI
o
o =
C R L when ,
sL I
o