1) A_02 Gi¶i ph¬ng tr×nh: 5 cos3x + sin3x
sin +
1 2sin2x
x
= cos2x + 3
2) D_02 T×m c¸c nghiÖm thuéc [0; 14] cña ph¬ng tr×nh:
cos3x - 4cos2x + 3cosx - 4 = 0
3) A_03 Gi¶i ph¬ng tr×nh: cotx - 1 = cos2x
1 + tanx + sin
2x - 1
2sin2x
4) D_03 Gi¶i ph¬ng tr×nh: sin2(x
2 - π
4)tan2x - cos2 x
2 = 0 5) D_04 Gi¶i ph¬ng tr×nh: (2cosx - 1)(sinx + cosx) = sin2x - sinx
6) A_05 Gi¶i ph¬ng tr×nh: cos23xcos2x - cos2x = 0
7) D_05 Gi¶i ph¬ng tr×nh: cos4x + sin4x + cos(x - π
4)sin(3x -
π
4) -
3
2 = 0 8) A_05_dù bÞ1 T×m nghiÖm trªn kho¶ng (0 ; ) cña ph¬ng tr×nh:
4sin2 x
2 - 3cos2x = 1 + 2cos
2(x - 3π
4 )
9) A_05_dù bÞ 2 Gi¶i pt: 2 2 cos3( x - π
4) - 3cosx - sinx = 0
10) D_05_dù bÞ 1 Gi¶i pt: tan(3π
2 - x) +
sin
1 cos
x x
= 2
11) D_05_dù bÞ 2 Gi¶i pt: sin2x + cos2x - 3sinx - cosx - 2 = 0
12) A_06_dù bÞ 1 Gi¶i pt: cos3xcos3x - sin3xsin3x = 2 + 3 2
8
13) A_06_dù bÞ 2 Gi¶i pt: 4sin3x + 4sin2x + 3sin2x + 6cosx = 0
14) B_06_dù bÞ 1 Gi¶i pt: (2sin2x - 1)tan22x + 3(2cos2x - 1) = 0
15) B_06_dù bÞ 2 Gi¶i pt: cos2x + (1 + 2cosx)(sinx - cosx) = 0
16) D_06_dù bÞ 1 Gi¶i pt: cos3x + sin3x + 2sin2x = 1
17) D_06 Gi¶i pt: cos3x + cos2x - cosx - 1 = 0
18) A_07 Gi¶i ph¬ng tr×nh: (1 + sin2x)cosx + (1 + cos2x)sinx = 1 + sin2x 19) B_07 Gi¶i ph¬ng tr×nh: 2sin22x + sin7x - 1 = sinx
21) D_07 Gi¶i ph¬ng tr×nh: (sin2 x
2 + cos
2x
2 )
2 + 3 cosx = 2
22) C§_07 Gi¶i ph¬ng tr×nh: 2sin2(π
4 - 2x) + 3 cos4x = 4cos
2x - 1
23) A_08 Gi¶i ph¬ng tr×nh:
3π
2
Trang 224) B_08 Gi¶i ph¬ng tr×nh: sin3x - 3 cos3x = sinxcos2x - 3 sin2xcosx 25) D_08 Gi¶i ph¬ng tr×nh: 2sinx(1 + cos2x) + sin2x = 1 + 2cosx 26) C§_08 Gi¶i pt: sin3x - 3 cos3x = 2sin2x
A09: GPT
(1 2 sin ) cos
3 (1 2 sin )(1 s inx)
x
B09: GPT rf
D09: GPT 3 os5c x 2sin 3 cos 2x x s inx 0
A10: GPT
(1 s inx os2 )sin
1
x
B10: GPT (sin 2x c os2 )cosx x 2cos 2x sinx 0
D10: GPT sin 2x c os2x3sinx cosx 1 0