1. Trang chủ
  2. » Giáo án - Bài giảng

2D3 5 10 2

5 49 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 278,23 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Khối tròn xoay tạo ra khi quay hình phẳng  D quanh trục hoành có thể tích bằng bao nhiêu?. Tính thể tích V của2 khối tròn xoay tạo thành khi quay  H quanh trục hoành.. Tính thể tíc

Trang 1

Câu 1 [2D3-5.10-2] (THCS-THPT-NGUYỄN-KHUYẾN-TP-HCM-24THÁNG3) Tính thể tích V

của vật thể tròn xoay sinh ra khi hình phẳng giới hạn bởi các đường yx1, trục hoành, 2

x khi quay quanh trục hoành.

A.V 2

1 2

V

Lời giải

Tác giả: Lê Hoàn ; Fb:Lê Hoàn

Chọn A

Hoành độ giao điểm của đườngyx1và trục hoành là nghiệm của phương trình x 1 0 1

x

Thể tích V của vật thể tròn xoay sinh ra khi hình phẳng giới hạn bởi các đường yx1, trục hoành, x1, x2 khi quay quanh trục hoành là:

1

1

V  �xdx 2 

1 1

x dx

 �

2 2

1

 �  �

Câu 2 [2D3-5.10-2] (THPT LÝ THƯỜNG KIỆT – HÀ NỘI) Cho hình phẳng  D

giới hạn bởi đồ đường cong y 2 sin x, trục hoành và đường thẳng x , 0 x 2

 Khối tròn xoay tạo ra khi quay hình phẳng  D quanh trục hoành có thể tích bằng bao nhiêu?

A V  ( 1). B V    1 C V  ( 1). D V    1

Lời giải Chọn A

Thể tích khối tròn xoay tạo ra khi quay hình phẳng  D quanh trục hoành có thể tích là:

2

0 (2 sin )

0

2x cosx

   ( 1).

Câu 3 [2D3-5.10-2] (HK2 Sở Đồng Tháp) Cho hình phẳng D giới hạn bởi đường cong

2 1 2

 

y x x

, trục hoành và các đường thẳng x1;x4.Khối tròn xoay được tạo thành khi xoay D quanh

trục hoành có thể tích bằng:

A

42 5

4 15

128 25

Lời giải

Tác giả: Phan Mạnh Trường; Fb:Phan Mạnh Trường

Chọn A

Thể tích cần tìm:

4 2

V  �� xx�� x ��x  x x ��x��   �� 

Trang 2

Câu 4 [2D3-5.10-2] (CHUYÊN THÁI BÌNH LẦN V NĂM 2019) Cho  H

là hình phẳng giới hạn bởi parabol y x và đường tròn 2 x2 y2  (phần tô đậm trong hình) Tính thể tích V của2 khối tròn xoay tạo thành khi quay  H

quanh trục hoành

x y

O

A

5 3

V  

B

22 15

V  

44 15

V  

Lời giải

Tác giả: Lê Mai Thanh Dung; Fb: Thanh Dung Lê Mai

Chọn D

Tọa độ giao điểm của y x và 2 x2y2  là nghiệm hệ phương trình:2

 

2 2

2

y x

y x

� 

2

4 2

1 1 1

2 0

1

x y

y x

x

x x

y

� 

� 

� 

���    � ��  

Vậy thể tích của khối tròn xoay là: 1     

2

1

44 2

15

Câu 5 [2D3-5.10-2] (Chuyên Lê Quý Đôn Quảng Trị Lần 1) Cho hình phẳng  D

được giới hạn bởi hai đường y2x21

; y  Tính thể tích khối tròn xoay tạo thành do 1 x2  D

quay

quanh trục Ox

A

64 15

32

32 15

64

15.

Lời giải

Tác giả: Trương Thanh Nhàn; Fb: Trương Thanh Nhàn.

Chọn A

Trang 3

Phương trình hoành độ giao điểm của 2 đồ thị hàm số y2x21

y  là1 x2

 2  2

2 x   1 1 xx�.1

Lấy đối xứng đồ thị hàm số y2x21 qua trục Ox ta được đồ thị hàm số y2 1 x2 .

Ta có 2 1 x2 �1x2,x�1;1

Suy ra thể tích khối tròn xoay cần tìm là

2

1

64

15

Câu 6 [2D3-5.10-2] (CHUYÊN SƯ PHẠM HÀ NỘI LẦN 4 NĂM 2019) Cho các hàm số

 

yf xy g x   liên tục trên � thỏa mãn f x  g x  0 với  ��x Thể tích khối tròn xoay khi quay hình phẳng D trong hình vẽ xung quanh trục Ox được tính bởi công thức

A

 

 2    2

1

d 3

b

a

 

 2    2

d

b

a

V �f xg x x

C    2    2

d

b

a

D 1    2    2

d 3

b

a

Lời giải

Tác giả: Nguyễn Thị Ngọc Lan ; Fb: Ngoclan nguyen

Chọn B

Gọi V là thể tích khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số 1 yf x  , trục

hoành và các đường thẳng x a , x b , a b  quay quanh trục Ox

Ta có  2

b

a

V �f x x

Gọi V là thể tích khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số 2 y g x   , trục

hoành và các đường thẳng x a , x b , a b  quay quanh trục Ox

Ta có  2

2 g( ) d

b

a

Do f x  g x  0 với  �x  a b; nên V1 V2

Thể tích khối tròn xoay cần tính bằng V V V 1 2     2    2

d

b

a

 

 2    2

d

b

Trang 4

Câu 7 [2D3-5.10-2] (HK2 Sở Đồng Tháp) Cho hình phẳng D giới hạn bởi đường cong y  ln x,

trục hoành và đường thẳng x Khối tròn xoay tạo thành khi quay 3 D quanh trục hoành có

thể tích bằng bao nhiêu?

A 3ln 3 2  . B 23 . C 3ln 3 3  D 3ln 3 2  .

Lời giải Chọn A

Phương trình hoành độ giao điểm: ln x  0 � x  1.

Thể tích cần tìm là:

3

1 ln

V �xdx

Đặt

1 ln

x

dv dx

v x

1 1

V �x xdx�  

Tác giả: Hoàng Ngọc Quang; Fb:Hoàng Ngọc Quang

Câu 8 [2D3-5.10-2] (TRƯỜNG THỰC HÀNH CAO NGUYÊN – ĐẠI HỌC TÂY NGUYÊN

NĂM 2019) Hình phẳng C giới hạn bởi các đường y x 2 , trục tung và tiếp tuyến của đồ1 thị hàm số y x 2 tại điểm 1  1; 2

, khi quay quanh Ox tạo thành khối tròn xoay có thể tích

bằng

8 15

V  

28 15

V  

4 5

V  

Lời giải

Tác giả: Phan Minh Quốc Vinh; Fb: Vinh Phan

Chọn B

+ Lập phương trình đường thẳng tiếp tuyến của đồ thị hàm số y x 2 tại 1  1;2

Ta có y�2xy� 1 2.

Phương trình đường thẳng tiếp tuyến cần tìm y2x.

Thể tích của khối tròn xoay giới hạn bởi đường y x 2 , trục tung và đường thẳng 1 y2x.

Phương trình hoành độ giao điểm của hai đồ thị hàm số y x 2 và 1 y2x

x   xx .

Vậy thể tích cần tìm là

2

1

0

Trang 5

Câu 9 [2D3-5.10-2] (THPT LÝ THƯỜNG KIỆT – HÀ NỘI) Thể tích khối tròn xoay được tạo bởi

khi quay hình phẳng giới hạn bởi đường cong y xex , trục hoành và hai đường thẳng x ,0 2

x quanh trục hoành bằng  4 

4

ae b

Giá trị a b là

Lời giải Chọn B

* Thể tích cần tìm là: 2 2 2 2 2

V �xe x�x e x

* Tính

2

2 2 0 d

x

I �x e x

*Đặt

2

2 2

d 2 d 1

2

x x

u x

�

*

2

0

2

x

Ie �xe xe �xe x

* Tính

2 2 1

0 d

x

I �xe x

*Đặt

2 2

1

2

x x

u x

1

* Vậy

4

2

e e

 �  �

5

4 1

a

a b b

 

�  

Ngày đăng: 30/03/2020, 18:25

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w