Tran Huong Lan... After this lesson, you will know • Definition of limits • How to estimate a limit • When a limit exists and does not exist • How to interpret limits • How to estima
Trang 11.1 Limit of a Function
Chapter 1
Dr Tran Huong Lan
Trang 2LIMIT=TENDENCY
Trang 3First example
2 2
2
4
x
2
2
2 4
x
x
1.9 1.99 1.99 2 2.001 2.01 2.1 0.746 0.749 0.7499 || 0.750 0.751 0.756
We create a table of values for x close to 2
0.75
Trang 4After this lesson, you will know
• Definition of limits
• How to estimate a limit
• When a limit exists and does not exist
• How to interpret limits
• How to estimate limits by graphing
Trang 5Informal definition of limit
Trang 6Example
x
-0.1 -0.01 -0.001 0 0.001 0.01 0.1
0.995 0.99995 0.9999995 1 0.9999995 0.99995 0.995
We create a table of values for x close to 0
0
cos x
sin x -0.01 -0.001 -0.0001 0 0.0001 0.001 0.01
1
Note that the limit at 0 IS NOT the value of the function at 0
Trang 7One-sided limits
• Right-hand limit
• Left-hand limit
lim ( ) ( )
x c
f x L x c
lim ( ) ( )
x c
f x L x c
3
lim ( ) 1
x
h x
3
lim ( ) 1
x
h x
3
lim ( ) does not exist.
x h x
Trang 8One-sided limit theorm
The two-sided limit lim ( ) if and only if lim ( ) lim ( )
x c
f x L
Trang 9Example: find limits from graphs
Estimate the following limits
0
lim ( ) 1
x f x
1
lim ( ) does not exist
x g x
lim ( )1 2
x h x
Trang 10Example: find limits from graphs
Estimate the following limits when
sin x
y
x
sin
y
x
0
x
2
1
y x
0
sin lim 1
x
x x
1 lim does not exist
1 lim sin does not exist
x x
Trang 11Infinite limits
Trang 12Formal definition of a limit
Trang 13Epsilon-delta definition of a limit
The interval always contains c
L is the LIMIT
Trang 14Epsilon-delta definition of a limit
The interval always contains c
L is the LIMIT
Trang 15Epsilon-delta definition of a limit
The interval does not contain c !
NOT