1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article Monotonic and Logarithmically Convex Properties of a Function Involving Gamma Functions" pdf

13 274 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 501,53 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2009, Article ID 728612, 13 pagesdoi:10.1155/2009/728612 Research Article Monotonic and Logarithmically Convex Properties of a Function Involving Gamma Functions Tie-Hong Zhao,1 Y

Trang 1

Volume 2009, Article ID 728612, 13 pages

doi:10.1155/2009/728612

Research Article

Monotonic and Logarithmically Convex Properties

of a Function Involving Gamma Functions

Tie-Hong Zhao,1 Yu-Ming Chu,2 and Yue-Ping Jiang3

1 Institut de Math´ematiques, Universit´e Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France

2 Department of Mathematics, Huzhou Teachers College, Huzhou 313000, Zhejiang, China

3 College of Mathematics and Econometrics, Hunan University, Changsha 410082, Hunan, China

Correspondence should be addressed to Yu-Ming Chu,chuyuming2005@yahoo.com.cn

Received 14 October 2008; Accepted 27 February 2009

Recommended by Sever Dragomir

Using the series-expansion of digamma functions and other techniques, some monotonicity and logarithmical concavity involving the ratio of gamma function are obtained, which is to give a partially affirmative answer to an open problem posed by B.-N Guo and F Qi Several inequalities for the geometric means of natural numbers are established

Copyrightq 2009 Tie-Hong Zhao et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

For real and positive values of x the Euler gamma functionΓ and its logarithmic derivative

ψ, the so-called digamma function, are defined as

Γx 

∞

0

t x−1e −t dt, ψ x  Γx

For extension of these functions to complex variables and for basic properties see1

In recent years, many monotonicity results and inequalities involving the Gamma and incomplete Gamma functions have been established This article is stimulated by an open problem posed by Guo and Qi in2 The extensions and generalizations of this problem can

be found in3 5 and some references therein

Using Stirling formula, for all nonnegative integers k, natural numbers n and m, an

upper bound of the quotient of two geometrical means of natural numbers was established

Trang 2

2 Journal of Inequalities and Applications

in4 as follows:

n k

i k1 i1/n

n mk

i k1 i1/nm



n  k

and the following lower bound was appeared in2,5 :

n  k  1

n  m  k  1 <

n



n  k!/k!

nm

SinceΓn  1  n!, as a generalization of inequality 1.3, the following monotonicity result was obtained by Guo and Qi in2 The function

Γx  y  1/Γy  1 1/x

is decreasing with respect to x on 1, ∞ for fixed y ≥ 0 Hence, for positive real numbers x and y, we have

x  y  1

x  y  2



Γx  y  1/Γy  1 1/x



Γx  y  2/Γy  1 1/x1 . 1.5

Recently, in6 , Qi and Sun proved that the function



Γx  y  1/Γy  1 1/x

is strictly increasing with respect to x ∈ y  1, ∞ for all y ≥ y0.

Now, we generalize the function in1.4 as follows: for positive real numbers x and y,

α≥ 0, let

F α x, y 



Γx  y  1/Γy  1 1/x

The aim of this paper is to discuss the monotonicity and logarithmical convexity of the

function F α x, y with respect to parameter α.

For convenience of the readers, we recall the definitions and basic knowledge of convex function and logarithmically convex function

Trang 3

Definition 1.1 Let D ⊂ R2be a convex set, f : D → R is called a convex function on D if

f

2

f x  fy

for allx, y ∈ D, and f is called concave if −f is convex.

Definition 1.2 Let D ⊂ R2 be a convex set, f : D → 0, ∞ is called a logarithmically convex function on D if ln f is convex on D, and f is called logarithmically concave if ln f

is concave

The following criterion for convexity of function was established by Fichtenholz in7

derivatives, then f is a convex (or concave) function on D if and only if L x is a positive (or negative)

semidefinite matrix for all x ∈ D, where

Lx 

f11 f12

and f ij  ∂2f x1, x2/∂x i ∂x j for x  x1, x2, i, j  1, 2.

Notation 1 In Definitions1.1,1.2andProposition 1.3, we denotex, y by the points or vectors

of R2, and denote x, y by the real variables in the later.

Our main results are Theorems1.4and1.5

Theorem 1.4 1 For any fixed y ≥ 0, F α x, y is strictly increasing (or decreasing, resp.) with

respect to x on 0, ∞ if and only if 0 ≤ α ≤ 1/2 (or α ≥ 1, resp.);

2 For any fixed x > 0, F α x, y is strictly increasing with respect to y on 0, ∞ if and only

if 0 ≤ α ≤ 1.

Theorem 1.5 1 If 0 ≤ α ≤ 1/4, then F α x, y is logarithmically concave with respect to x, y ∈

0, ∞ × 0, ∞;

2 If E ⊂ 0, ∞ × 0, ∞ is a convex set with nonempty interior and α ≥ 1, then F α x, y is

neither logarithmically convex nor logarithmically concave with respect to x, y on E.

The following two corollaries can be derived from Theorems1.4and1.5immediately

Corollary 1.6 If x, y ∈ 0, ∞ × 0, ∞, then

x  y  1

x  y  2 <



Γx  y  1/Γy  1 1/x



Γx  y  2/Γy  1 1/x1 <



x  y  1

Trang 4

4 Journal of Inequalities and Applications

Remark 1.7 Inequality1.3 can be derived fromCorollary 1.6if we take x, y ∈ N Although

we cannot get the inequality1.2 exactly fromCorollary 1.6, but we can get the following inequality which is close to inequality1.2:

n k

i k1 i1/n

n mk

i k1 i1/nm



n  k  1

Corollary 1.8 If x1, y1, x2, y2 ∈ 0, ∞ × 0, ∞, then



Γx1 y1 1/Γy1 1 1/x1·Γx2 y2 1/Γy2 1 1/x2



Γx1 x2 y1 y2/2  1/Γy1 y2/2  1 4/x1x2 

2

x1 y1 1x2 y2 1 1/4



x1 y1 x2 y2 2 .

1.12

Remark 1.9 We conjecture that the inequality1.2 can be improved if we can choose two pairs of integersx1, y1 and x2, y2 properly

2 Lemmas

It is well known that the Bernoulli numbers B nis defined8 in general by

1

e t− 1

1

2 −1

t ∞

n1

−1n−1 t 2n

In particular, we have

B1 1

6, B2 1

30, B3 1

42, B4 1

In9 , the following summation formula is given:



n0

−1n

2n  1 2k1  π 2k1 E k

for nonnegative integer k, where E kdenotes the Euler number, which implies

B n 22n!

2π 2n



m1

1

Recently, the Bernoulli and Euler numbers and polynomials are generalized in10–13 The following two Lemmas were established by Qi and Guo in3,14

Trang 5

Lemma 2.1 see 3  For real number x > 0 and natural number m, one has

lnΓx  1

2ln2π  x− 1

2

ln x − x m

n1

−1n−1 B n

22n − 1n·

1

x 2n−1

 −1m θ1 B m1

2m  12m  2·

1

x 2m1 , 0 < θ1< 1;

2.5

ψ x  ln x − 1

2xm

n1

−1n B n

2n· 1

x 2n  −1m1θ2 B m1

2m  2·

1

x 2m2 , 0 < θ2< 1; 2.6

ψx  1

x 1

2x2 m

n1

−1n−1 B n

x 2n1 −1m θB m1

x 2m3 , 0 < θ3< 1; 2.7

ψx  −1

x2 − 1

x3 m

n1

−1n 2n  1 B n

x 2n2 −1m12m  3θB m1

x 2m4 , 0 < θ4< 1. 2.8

Lemma 2.2 see 14  Inequalities

ln x− 1

x ≤ ψx ≤ ln x − 1

k − 1!

x k  k!

2x k1 ≤ −1k1ψ k x ≤ k − 1!

x k  k!

hold in 0, ∞ for k ∈ N.

Lemma 2.3 Let rx, y  ψx  y  1 − ψy  1 − αx/x  y  1, then the following statements

are true:

1 if 0 ≤ α ≤ 1, then rx, y ≥ 0 for x, y ∈ 0, ∞ × 0, ∞;

2 if α > 1, then rα, y < 0 for y ∈ 2/α − 1, ∞.

Proof. 1 Making use of 2.6 we get

lim

y→ ∞r x, y  lim

y→ ∞

 lnx  y  1 − lny  1  0 2.11

for any fixed x > 0.

Since ψx  1  1/x  ψx and 0 ≤ α ≤ 1, we have

r x, y − rx, y  1  x



1 − αy  x  2 − α

y  1x  y  1x  y  2 > 0 2.12

for allx, y ∈ 0, ∞ × 0, ∞.

Trang 6

6 Journal of Inequalities and Applications Therefore,Lemma 2.31 follows from 2.11 and 2.12

2 If α > 1, then 2.12 leads to

for y ∈ 2/α − 1, ∞.

Therefore,Lemma 2.32 follows from 2.11 and 2.13

for x, y ∈ 0, ∞ × 0, ∞.

Proof It is easy to see that

for all y ∈ 0, ∞.

Let g1x, y  ∂gx, y/∂x, then

g1x, y  2y  1 − ψx  y  1  ψy  1 , 2.15

∂g1x, y

∂x  2ψy  1 − ψx  y  1 > 0 2.17

for x > 0 On the other hand, from2.10 we know that ψx is strictly decreasing on 0, ∞.

Therefore,Lemma 2.4follows from2.14–2.17

Remark 2.5 Let

a x, y  2

x3



lnΓx  y  1 − ln Γy  1 − 2

x2ψ x  y  1,

b x, y  − 1

x2



ψ x  y  1 − ψy  1 ,

c x, y  −1

x ψ

y  1.

2.18

Then simple computation shows that

g x, y  x3

2bx, y − ax, y − cx, y . 2.19

Lemma 2.6 Let dx, y  1/x ψx  y  1  α/x  y  12, then the following statements are true:

1 if 0 ≤ α ≤ 1/4, then



a x, y  dx, y c x, y  dx, y >

b x, y  dx, y 2 2.20

for x, y ∈ 0, ∞ × 0, ∞;

Trang 7

2 if α ≥ 1, then



a x, y  dx, y c x, y  dx, y <

b x, y  dx, y 2 2.21

for x, y ∈ 0, ∞ × 0, ∞.

Proof Let

f x, y  2ψy  1xψ x  y  1 − ln Γx  y  1  ln Γy  1 −ψ x  y  1 − ψy  1 2

,

p x, y  fx, y − gx, y



ψx  y  1  αx

x  y  12



.

2.22 Then it is not difficult to verify

p x, y  x4

a x, y  dx, y c x, y  dx, y −b x, y  dx, y 2

∂p x, y

x  y  12

∂g x, y

∂x − gx, y



ψx  y  1  α

x  y  12 − 2αx

x  y  13



.

2.25

1 If 0 ≤ α ≤ 1/4, then making use of Lemmas2.2,2.4and2.25 we get

∂p x, y

∂x >αx

x  y  12

∂g x, y

∂x

 gx, y

 1

x  y  12  1

x  y  13 − α

x  y  12  2αx

x  y  13



> 1

x  y  12



1 − αgx, y − αx ∂g x, y

∂x



, 2.26

forx, y ∈ 0, ∞ × 0, ∞.

Let g i x, y  ∂ i g x, y/∂x i , i  1, 2, 3, 4, qx, y  1 − αgx, y − αx∂gx, y/∂x, and q j x, y  ∂ j q x, y/∂x j , j  1, 2 Then simple computation leads to

∂q2x, y

∂x  1 − 4αg3x, y − αxg4x, y, 2.29

for all y ∈ 0, ∞.

Trang 8

8 Journal of Inequalities and Applications

It is well known that lnΓx  −cx  ∞k1x/k − ln1  x/k − ln x, where c  0.577215· · · is the Euler’s constant From this we get

ψ n −1n1n!



k0

1

FromLemma 2.2,2.27–2.29, 2.31 and the assumption 0 ≤ α ≤ 1/4, we conclude

that

∂q2x, y

Therefore,Lemma 2.61 follows from 2.23–2.26, 2.30, and 2.32

2 If α ≥ 1, then making use of 2.8,Lemma 2.4and2.25 we obtain

∂p x, y

∂x <αx

x  y  12

∂g x, y

∂x  gx, y

 1

x  y  13  1

2x  y  14  2αx

x  y  13



<αx

x  y  12

∂g x, y

∂x  gx, y 2αx  1

x  y  13

< α x  1

x  y  13



2gx, y − x ∂g x, y

∂x



.

2.33 Let

v x, y  2gx, y − x ∂g x, y

∂x , v i x, y  ∂ i v x, y

∂x i , i  1, 2. 2.34 Then

v2x, y  2xψx  y  1 < 0 2.35

forx, y ∈ 0, ∞ × 0, ∞ byLemma 2.2, and

for y ∈ 0, ∞.

Therefore,Lemma 2.62 follows from 2.23–2.25 and 2.33–2.36

Trang 9

3 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4 1 Let Gx, y  ln F α x, y and G1x, y  x2∂Gx, y/∂x, then

G1x, y  −lnΓx  y  1 − ln Γy  1  xψx  y  1 − αx2

x  y  1 . 3.1

The following three cases will complete the proof ofTheorem 1.41

Case 1 If 0 ≤ α ≤ 1/2, then 3.1 andLemma 2.2imply

∂G1x, y

∂x  x



ψx  y  1 − α x  2y  2

x  y  12



> x

 1

x  y  1

1 2x  y  12 −α x  2y  2

x  y  12



2x  y  12



2 − 2αx  2 − 4αy  3 − 4α

> 0

3.2

forx, y ∈ 0, ∞ × 0, ∞.

From3.2 and the fact that G10, y  0 for all y ∈ 0, ∞ we know that F α x, y is strictly increasing with respect to x on 0, ∞ for any fixed y ∈ 0, ∞.

Case 2 If α≥ 1, then 3.1 and 2.7 imply

∂G1x, y

∂x < x

 1

x  y  1

1 2x  y  12  1

6x  y  13 −α x  2y  2

x  y  12



6x  y  13



6 − 6αx2 λ1yx  λ2y

< 0

3.3

forx, y ∈ 0, ∞ × 0, ∞, where λ1y  12 − 18αy  15 − 18α < 0 and λ2y  61 − 2αy2

15 − 24αy  10 − 12α < 0.

From3.3 and the fact that G10, y  0 for all y ∈ 0, ∞ we know that F α x, y is strictly decreasing with respect to x on 0, ∞ for any fixed y ∈ 0, ∞.

Case 3 If 1/2 < α < 1, let

G2x, y  ψx  y  1 − α x  2y  2

Trang 10

10 Journal of Inequalities and Applications Then

∂G1x, y

G20, y < 1

y 1

1 2y  12  1

6y  13 −

y 1

6y  13

 61 − 2αy2 15 − 24αy  10 − 12α < 0

3.6

for y ≥ 15 − 24α 48α − 15/24α − 12.

It is obvious that3.6 implies

G2 0,15√48α− 15

24α− 12

The continuity of G2x, y with respect to x ∈ 0, ∞ for any fixed y ∈ 0, ∞ and 3.7 imply

that there exists δ  δα > 0 such that

G2 x,15√48α− 15

24α− 12

for x ∈ 0, δ.

From3.5, 3.8 and G10, 15 48α − 15/24α − 12  0 we know that F α x, y is strictly decreasing with respect to x on 0, δ for y  15 48α − 15/24α − 12.

On the other hand, making use of2.5 and 2.6 we have

lim

x→ ∞G1x, y  lim

x→ ∞x



1− y 1

2

lnx  y  1

x  y  1



 Cy, θ1

 lim

x→ ∞1 − αx  Cy, θ1

 ∞,

3.9

where

C

y, θ1



 y1

2

lny  1 12y  11 − 1

for y ∈ 0, ∞ and 0 < θ1 < 1.

Equation3.9 implies that there exists M  Mα > δα such that

G1 x,15√48α− 15

24α− 12

for x ∈ M, ∞.

Trang 11

Hence, from3.11 we know that F α x, y is strictly increasing with respect to x on

M, ∞ for y  15 48α − 15/24α − 12.

2 Since

x ∂G x, y

∂y  ψx  y  1 − ψy  1 − αx

x  y  1  rx, y, 3.12

then,Theorem 1.42 follows from 3.12 andLemma 2.3

Proof of Theorem 1.5 Let G x, y  ln F α x, y, G

11x, y  ∂2G x, y/∂x2, G12  ∂2G x, y/

∂x∂y and G22x, y  ∂2G x, y/∂y2, then simple calculation yields

G11x, y  2

x3



lnΓx  y  1 − ln Γy  1 − 2

x2ψ x  y  1

 1

x ψ

x  y  1  α

x  y  12

 ax, y  dx, y,

3.13

G12x, y  −1

x2



ψ x  y  1 − ψy  1 1

x ψ

x  y  1  α

x  y  12

 bx, y  dx, y,

3.14

G22x, y  1

x



ψx  y  1 − ψy  1  α

x  y  12

 cx, y  dx, y,

3.15

where ax, y, bx, y, cx, y, and dx, y are defined inRemark 2.5andLemma 2.6

According to the Definition 1.2 and Proposition 1.3, to prove Theorem 1.5 we need only to show that

G11x, yG

22x, y −G12x, y 2≥ 0 3.17

for 0≤ α ≤ 1/4 and x, y ∈ 0, ∞ × 0, ∞, and

G11x, yG

22x, y −G12x, y 2

for α ≥ 1 and x, y ∈ 0, ∞ × 0, ∞.

Trang 12

12 Journal of Inequalities and Applications

Next, let wx, y  x3G11x, y, then

w x, y  2lnΓx  y  1 − ln Γy  1 − 2xψx  y  1  x2ψx  y  1  αx3

x  y  12,

w 0, y  0,

3.19

∂w x, y

∂x  x2



ψx  y  1  α x  3y  3

x  y  13



< x2



α x  3y  3

x  y  13 − 1

x  y  12 − 1

x  y  13



x  y  13



α − 1x  3α − 1y  3α − 2

< 0

3.20

forx, y ∈ 0, ∞ × 0, ∞ byLemma 2.2and 0≤ α ≤ 1/4.

Therefore, 3.16 follows from 3.19 and 3.20, and 3.17 and 3.18 follow from

Lemma 2.6 The proof ofTheorem 1.5is completed

Acknowledgments

This research is partly supported by 973 Project of China under grant 2006CB708304, N S Foundation of China under Grant 10771195, and N S Foundation Zhejiang Province under Grant Y607128

References

1 E T Whittaker and G N Watson, A Course of Modern Analysis, Cambridge Mathematical Library,

Cambridge University Press, Cambridge, UK, 1996

2 B.-N Guo and F Qi, “Inequalities and monotonicity for the ratio of gamma functions,” Taiwanese

Journal of Mathematics, vol 7, no 2, pp 239–247, 2003.

3 F Qi and B.-N Guo, “Monotonicity and convexity of ratio between gamma functions to different

powers,” Journal of the Indonesian Mathematical Society, vol 11, no 1, pp 39–49, 2005.

4 F Qi, “Inequalities and monotonicity of sequences involving n

n  1!/k!,” Soochow Journal of

Mathematics, vol 29, no 4, pp 353–361, 2003.

5 F Qi and Q.-M Luo, “Generalization of H Minc and L Sathre’s inequality,” Tamkang Journal of

Mathematics, vol 31, no 2, pp 145–148, 2000.

6 F Qi and J.-S Sun, “A mononotonicity result of a function involving the gamma function,” Analysis

Mathematica, vol 32, no 4, pp 279–282, 2006.

7 G M Fichtenholz, Differential- und Integralrechnung II, VEB Deutscher Verlag der Wissenschaften,

Berlin, Germany, 1966

8 M Abramowitz and I A Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, vol 55 of National Bureau of Standards Applied Mathematics Series, U.S.Government

Printing Office, Washington, DC, USA, 1964

9 Zh.-X Wang and D.-R Guo, Introduction to Special Function, The Series of Advanced Physics of Peking

University, Peking University Press, Beijing, China, 2000

10 B.-N Guo and F Qi, “Generalization of Bernoulli polynomials,” International Journal of Mathematical

Education in Science and Technology, vol 33, no 3, pp 428–431, 2002.

...

for all y ∈ 0, ∞.

Trang 8

8 Journal of Inequalities and Applications

It is well known that...

for allx, y ∈ 0, ∞ × 0, ∞.

Trang 6

6 Journal of Inequalities and Applications Therefore,Lemma... class="text_page_counter">Trang 4

4 Journal of Inequalities and Applications

Remark 1.7 Inequality1.3 can be derived fromCorollary 1.6if we take

Ngày đăng: 22/06/2014, 02:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm