Xác suất để khối nào cũng có học sinh được F .. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng 4... Hỏi sau 5 năm người đó rút cả vốn lẫn lãi được số tiền gần với số nào nh
Trang 1LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 1
Page: CLB GIÁO VIÊN TRẺ TP HUẾ
ĐỀ THI THỬ SỐ 02
Kú THI THPT QuèC GIA 2020
Môn: TOÁN
Thời gian làm bài: 90 phút, không kể thời gian phát đề
NỘI DUNG ĐỀ BÀI Câu 1: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A1; 2; 3 và B1; 2; 5 Tọa độ trung điểm của đoạn thẳng AB là
Câu 4: Cho hàm số có đồ thị như hình vẽ dưới đây:
Hàm số đã cho đồng biến trên khoảng
Câu 5: Đội văn nghệ của đoàn trường THPT Hùng Vương gồm 4 học sinh khối 12, 3 học sinh khối 11 và
2 học sinh khối 10 Ban chấp hành đoàn trường chọn ngẫu nhiên 5 học sinh từ đội văn nghệ để biểu diễn trong lễ kỷ niệm “Chào mừng ngày nhà giáo Việt Nam” Xác suất để khối nào cũng có học sinh được
F Chọn khẳng định đúng trong các khẳng định sau:
Trang 2LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 2
Câu 15: Cho hàm số y f x( ) có bảng biến thiên sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là
Câu 16: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S x: 2y2z28x2y 1 0 Tâm và bán kính của mặt cầu S là
A I–4;1;0,R2. B I–4;1;0,R4. C I4; – 1;0 , R2. D I4; – 1;0 , R4.
Câu 17: Cho hàm số y f x xác định và liên tục trên và có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
A Hàm số có giá trị cực tiểu bằng 3 hoặc 2
B Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng 4
Trang 3LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 3
V r h C 4 3
.3
a
D 6.3
a
Câu 21: Một người gửi 50 triệu đồng vào ngân hàng theo thể thức lãi kép với lãi suất 6,5%/năm, kì hạn
1 năm Hỏi sau 5 năm người đó rút cả vốn lẫn lãi được số tiền gần với số nào nhất trong các số tiền sau? (Biết lãi suất hàng năm không đổi)
A 73 triệu đồng B 53,3 triệu đồng C 64,3 triệu đồng D 68,5 triệu đồng
Câu 22: Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng P song song với
ABC A B C bằng
A
3
336
a
3
36
a
3
312
a
3
324
Trang 4LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 4
Câu 29: Cho hàm số y4x2cos2x có đồ thị là C Hoành độ của các điểm trên C mà tại đó tiếp tuyến của C song song hoặc trùng với trục hoành là
x y x
trên đoạn 2; 4 là A
Câu 33: Cho hàm số y f x có đồ thị như hình vẽ dưới đây:
Tập hợp tất cả các giá trị của tham số m để hàm số y f x m 2m1 có năm điểm cực trị là
Câu 35: Một ô tô đang chạy với vận tốc 20 m/s thì người lái xe phát hiện có hàng rào chắn ngang đường
ở phía trước cách xe 45 m (tính từ đầu xe tới hàng rào) nên người lái đạp phanh Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc v t 5t 20 m s/ , trong đó t là thời gian được tính từ lúc người lái đạp phanh Khi xe dừng hẳn, khoảng cách từ xe đến hàng rào là bao nhiêu?
A 4 m B 5 m C 3 m D 6 m
Câu 36: Cho tam giác vuông ABCcó cạnh huyền BC6 3 quay quanh AC được khối tròn xoay Tính
AC để thể tích khối thu được lớn nhất
Trang 5LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 5
Hàm số y f5 2 x nghịch biến trên khoảng nào dưới đây?
Câu 39: Cho hàm số y f x liên tục trên và có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số m sao cho phương trình 2fsinxcosx m 1 có hai nghiệm phân biệt trên khoảng ;3
Câu 42: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A4; 6; 2 và B2; 2; 0 và mặt phẳng
P x y z: 0 Xét đường thẳng d thay đổi thuộc P và đi qua B, gọi H là hình chiếu vuông góc của
A trên d Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định Bán kính của đường tròn đó là
Trang 6LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 6
Câu 46: Ông Hiền có một mảnh vườn hình elip có độ dài trục lớn
bằng 10 m và độ dài trục bé bằng 6 m Ông kẽ hai đường tròn
có bán kính 3 m , với tâm các đường tròn là tại các đỉnh trên trục
lớn Ông muốn trồng hoa trên một dải đất giới hạn như phần gạch
mx x
có đúng bốn đường tiệm cận?
ln sin 2cos
ln 3 ln 2cos
x x
x a b c x
Có bao nhiêu giá trị nguyên của m trên 5; 5 để phương trình f x2 2x m e có bốn
nghiệm phân biệt?
HẾT
HUẾ Ngày 01 tháng 02 năm 2020
Trang 7LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 7
Page: CLB GIÁO VIÊN TRẺ TP HUẾ
Trang 8LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 8
Hàm số đã cho đồng biến trên khoảng
Lời giải:
Hàm số đồng biến trên 1;0 và 1; .Hàm số nghịch biến trên ; 1 và 0;1
Câu 5: Đội văn nghệ của đoàn trường THPT Hùng Vương gồm 4 học sinh khối 12, 3 học sinh khối 11 và
2 học sinh khối 10 Ban chấp hành đoàn trường chọn ngẫu nhiên 5 học sinh từ đội văn nghệ để biểu diễn trong lễ kỷ niệm “Chào mừng ngày nhà giáo Việt Nam” Xác suất để khối nào cũng có học sinh được
F Chọn khẳng định đúng trong các khẳng định sau:
x
F x e x
Trang 9LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 9
Câu 7: Điểm cực đại x0 của hàm số y x 33x1 là
Trang 10LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 10
3 3
Trang 11LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 11
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Câu 17: Cho hàm số y f x xác định và liên tục trên và có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
A Hàm số có giá trị cực tiểu bằng 3 hoặc 2
B Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng 4
C Đồ thị hàm số có đúng 2 điểm cực trị
D Hàm số đạt cực đại tại x0
Lời giải:
Dựa vào bảng biến thiên ta có:
Đáp án A sai vì hàm số có điểm cực tiểu bằng 3 hoặc 2, giá trị cực tiểu bằng 4
Đáp án B sai Trên hàm số đã cho không có giá trị giá trị lớn nhất, giá trị cực đại bằng 0
V r h C 4 3
.3
Trang 12LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 12
a
D 6.3
a
Lời giải:
M H
D
C B
A
Gọi H là trọng tâm của tam giác BCD Do ABCD là tứ diện đều nên AHBCD.
Xét tam giác AHB vuông tại
Câu 21: Một người gửi 50 triệu đồng vào ngân hàng theo thể thức lãi kép với lãi suất 6,5%/năm, kì hạn
1 năm Hỏi sau 5 năm người đó rút cả vốn lẫn lãi được số tiền gần với số nào nhất trong các số tiền sau? (Biết lãi suất hàng năm không đổi)
A 73 triệu đồng B 53,3 triệu đồng C 64,3 triệu đồng D 68,5 triệu đồng
Trang 13LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 13
Theo bài ra: 2 2 6
Ta chia thành các trường hợp sau :
TH1 : Nếu các chữ số 1; 2; 3lần lượt đứng đầu thì có 4
ABC A B C bằng
Trang 14LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 14
A
3
336
a
3
36
a
3
312
a
3
324
B
C A'
Gọi Glà trọng tâm của tam giác ABC Ta có:
1
x x x
x
f x f
Câu 28: Cho hình chóp S ABC có đáy là tam giác ABC thỏa mãn AB AC 4,BAC30 0 Mặt phẳng P
song song với ABC cắt đoạn SA tại M sao cho SM2MA. Diện tích thiết diện của hình chóp S ABC.khi cắt bởi mặt phẳng P bằng
Trang 15LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 15
S
B
C A
x y x
trên đoạn 2; 4 là A
Trang 16LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 16
Câu 33: Cho hàm số y f x có đồ thị như hình vẽ dưới đây:
Tập hợp tất cả các giá trị của tham số m để hàm số y f x m 2m1 có năm điểm cực trị là
Lời giải:
Dựa vào đồ thị suy ra được f x có hai cực trị và y C Đ3,y C T 0.
Suy ra hàm số y f x m có hai cực trị và y C Đ 3,y C T 0(tịnh tiến theo phương Ox)
Trang 17LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 17
Câu 35: Một ô tô đang chạy với vận tốc 20 m/s thì người lái xe phát hiện có hàng rào chắn ngang đường
ở phía trước cách xe 45 m (tính từ đầu xe tới hàng rào) nên người lái đạp phanh Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc v t 5t 20 m s/ , trong đó t là thời gian được tính từ lúc người lái đạp phanh Khi xe dừng hẳn, khoảng cách từ xe đến hàng rào là bao nhiêu?
Câu 36: Cho tam giác vuông ABCcó cạnh huyền BC6 3 quay quanh AC được khối tròn xoay Tính
AC để thể tích khối thu được lớn nhất
Trang 18LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 18
f x 0 0 0 Hàm số y f5 2 x nghịch biến trên khoảng nào dưới đây?
Trang 19LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 19
Có bao nhiêu giá trị nguyên của tham số m sao cho phương trình 2fsinxcosx m 1 có hai nghiệm phân biệt trên khoảng ;3
Dựa vào bảng biến thiên của hàm số f x trên khoảng
2; 2 Để thỏa mãn yêu cầu bài toán đường thẳng 1
Kết hợp với điều kiện xác định suy ra n11.
Trang 20LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 20
Số hạng chứa x9 ứng với k thỏa 7k33 9 k 6
Vậy hệ số của số hạng chứa x9 là 6 5
Câu 42: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A4; 6; 2 và B2; 2; 0 và mặt phẳng
P x y z: 0 Xét đường thẳng d thay đổi thuộc P và đi qua B, gọi H là hình chiếu vuông góc của
A trên d Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định Bán kính của đường tròn đó là
Trang 21LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 21
H C
B A
A'
B' C'
1
2
x y
Trang 22LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 22
Gọi H là trung điểm của B C , khi đó HH là trục của hai đường tròn ngoại tiếp hai đáy của lăng trụ Vậy trung điểm I của HH là tâm mặt cầu ngoại tiếp hình lăng trụ ABC A B C. Bán kính mặt cầu ngoại tiếp lăng trụ là : 2 2 14
BC BC CC a
Câu 45: Cho 0 x 2020 và log (22 2) 3 8y
x x y Có bao nhiêu cặp số ( ; )x y nguyên thỏa mãn các điều kiện trên?
Ta có 0 x 2020 nên 1 x 1 2021 suy ra 0 log ( 8 x 1) log 20218 .
Lại có log 2021 3,668 nên nếu y thì y0;1; 2; 3.
Vậy có 4 cặp số ( ; )x y nguyên thỏa yêu cầu bài toán là các cặp (0; 0), (7 ;1) ,(63; 2),(511; 3)
Câu 46: Ông Hiền có một mảnh vườn hình elip có độ dài trục lớn
bằng 10 m và độ dài trục bé bằng 6 m Ông kẽ hai đường tròn
có bán kính 3 m , với tâm các đường tròn là tại các đỉnh trên trục
lớn Ông muốn trồng hoa trên một dải đất giới hạn như phần gạch
của hình vẽ Biết kinh phí để trồng hoa là 500.000 đồng/1 m 2 Hỏi
ông Hiền cần bao nhiêu tiền để trồng hoa trên dải đất đó? (Số tiền
Trang 23LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 23
8
2 1
25 2
mx x
có đúng bốn đường tiệm cận?
Trang 24LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 24
x y x y
Khi đó ta có x 4 là đường tiệm cận đứng của đồ thị hàm số.
Do đó m0 không thỏa yêu cầu của bài toán
TH3: m0 suy ra tập xác định của hàm số là D ;x1 x2; (x x1; 2 là nghiệm của phương trình mx28x 2 0) Do đó đồ thị hàm số có bốn đường tiệm cận khi phương trình
ln sin 2cos
ln 3 ln 2cos
x x
x a b c x
ln sin 2cos
cos
x x
x x
x x
x x
Trang 25LuyÖn thi THPT Quèc gia 2019 2020 Đề thi thử lần 02 Tháng 02/2020/ Trang 25
Có bao nhiêu giá trị nguyên của m trên 5; 5 để phương trình f x2 2x m e có bốn
nghiệm phân biệt?