1. Trang chủ
  2. » Giáo án - Bài giảng

giải tích 2 lê xuân đại functions of single variable sinhvienzone com

52 91 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 52
Dung lượng 413,68 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lê Xuân Đại HCMUT-OISP FUNCTIONS OF SINGLE VARIABLE HCMC — 2016... Lê Xuân Đại HCMUT-OISP FUNCTIONS OF SINGLE VARIABLE HCMC — 2016... Lê Xuân Đại HCMUT-OISP FUNCTIONS OF SINGLE VARIABLE

Trang 1

FUNCTIONS OF SINGLE VARIABLE

E LECTRONIC VERSION OF LECTURE

Dr Lê Xuân Đại

HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics

Trang 2

1 F UNCTIONS OF SINGLE VARIABLE

2 B ASIC PROPERTIES OF FUNCTIONS

Trang 3

A function f is a rule that assigns to each element x in

a set X ⊂ R exactly one element y , called f (x) in a set

The set X = {x ∈ R : f (x) is defined}is called the domain

of the function f and is denoted by D(f ). The set

function f and is denoted by E(f ).

f (x)is the value off atxand is read "f of x"

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 3 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 4

The set consists of all points (x, f (x)), x ∈ X in the coordinate plane Oxy is called the graph of the function f

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 4 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 5

Find the domain and range of function f (x) =px + 2

SOLUTION

1 The domain off consists of all values ofxsuch

interval[−2,+∞)

2 The range off consists of all values ofy such that

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 5 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 6

The functions which are defined by different formulas

in different parts of their domain, are called

piecewise defined functions

Trang 7

Suppose thaty = f (u),whereuis a function ofx :

Given 2 functions f and g, the composite function

(f ◦ g)(x) = f (g(x))

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 7 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 8

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 8 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 10

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 10 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 11

Let f be a one-to-one function with domain D and range E. Then its inverse function f−1 (read: f inverse) has domain E and range D and is defined by

Trang 13

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 13 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 14

HOW TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTIONf

1 Writey = f (x)

2 Solve this equation forx in terms ofy (if possible)

3 To expressf−1as a function ofx,interchangex

andy The resulting equation isy = f−1(x)

Trang 15

The function f is called periodic of period T > 0 if for

Trang 16

1 Function f (x) = x is increasing on theR.

2 Function g(x) = x2 is decreasing on the interval

(−∞,0)and increasing on the interval(0, +∞).

3 Function h(x) = c = const, according to the definition is not decreasing and not increasing.

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 16 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 19

Let function f : X → Y be defined on a set D ⊂ X.

Function f is called

1 bounded from above if there is a number M ∈ R

such that for all x ∈ D from the domain D one has

f (x) É M;

2 bounded from below if there is a number m ∈ R

such that for all x ∈ D from the domain D one has

f (x) Ê m;

3 bounded if there is a number C > 0 such that for

4 unbounded if for all C > 0, exists x0∈ D such that

|f (x0)| > C.

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 19 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 21

LINEAR FUNCTION

mis the slope of the line andbis they−intercept.The slope,m, of the line through(x1, y1)and(x2, y2)isgiven by the following equation, ifx16= x2

m = y2− y1

x2− x1The slope of a line can be interpreted as the rate ofchange in they−coordinates for each 1-unit increase

in the x−coordinates

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 21 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 22

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 22 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 24

A function P is called a polynomial if

P(x) = a n x n + a n−1 x n−1 + + a2x2+ a1x + a0

where n is a nonnegative integer and the numbers

a0, a1, a2, , a n are constants called the coefficients of the polynomial.

If the leading coefficienta n6= 0,then thedegreeofthe polynomial isn

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 24 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 25

degree3- cubic function

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 25 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 27

Caseα = 2 ⇒ y = x2 - square function

Trang 29

Caseα =1

2 ⇒ y =px- square root function

1 Domain:D = [0,+∞)

2 Range:E = [0,+∞)

3 Function is increasing on the interval(0, +∞)

4 Function does not have symmetry

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 29 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 30

a x .b x = (ab) x

a x

b x =

³a b

Trang 31

Function y = a x , (a > 1)

1 Domain:D = R

2 Range:E = (0,∞)

3 Function is increasing on the interval(−∞,+∞)

4 The graph always passes through the point at

(0, 1)

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 31 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 32

Function y = a x , (0 < a < 1)

1 Domain:D = R

2 Range:E = (0,+∞)

3 Function is decreasing on the interval(−∞,+∞)

4 The graph always passes through the point at

(0, 1)

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 32 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 33

LOGARITHMIC FUNCTIONS

(Read: logarithm ofxwith basea)Logarithmic functiony = log a xis the inverse function

of exponential functiony = a x,this means that, if

logarithmic function is:

D = {x ∈ R | x > 0}.

The graph of logarithmic functiony = log a xis thereflection of the graph of exponential functiony = a x

about the line y =x

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 33 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 34

Properties of logarithmic functions

log a (x.y) = log a x + log a y log a

µx y

= log a x − log a y

log aµ 1x

= −log a x log a β x α= α

β log a x

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 34 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 35

Function y = log a x, (a > 1)

1 Domain:D = (0,+∞)

2 Range:E = R

3 Function is increasing on the interval(0, +∞)

4 The graph of logarithmic functiony = log a xis thereflection of the graph of exponential function

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 35 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 36

Function y = log a x, (0 < a < 1)

1 Domain:D = (0,+∞)

2 Range:E = R

3 Function is decreasing on the interval(0, +∞)

4 The graph of logarithmic functiony = log a xis thereflection of the graph of exponential function

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 36 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 37

Function siney = sinx

1 Domain:D = R 2 Range:E = [−1,1]

3 Function is periodic of period2π :

sin(x) = sin(x + 2π) = sin(x − 2π)

4 Function is increasing on the interval¡−π2,π2¢ ,anddecreasing on the interval¡π

Trang 38

Function cosiney = cosx

1 Domain:D = R 2 Range:E = [−1,1]

3 Function is periodic of period2π :

cos(x) = cos(x + 2π) = cos(x − 2π)

4 Function is increasing on the interval(−π,0),anddecreasing on the interval(0,π),

5 Function is even, the graph is symmetric withrespect to they−axis

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 38 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 39

Function tangenty = tanx = cos x sin x

1 Domain:D = R \©π2 + kπ, k ∈ Zª

2 Range:E = R

3 Function is periodic of periodπ :

tan(x) = tan(x + π) = tan(x − π)

4 Function is increasing on the interval¡−π2,π

5 Function is odd, the graph is symmetric aboutthe originO(0, 0)

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 39 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 40

Function cotangenty = cotx = cos x sin x

1 Domain:D = R \ {kπ,k ∈ Z}

2 Range:E = R

3 Function is periodic of periodπ :

cot(x) = cot(x + π) = cot(x − π)

4 Function is decreasing on the interval(0,π)

5 Function is odd, the graph is symmetric aboutthe originO(0, 0)

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 40 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 41

Some basic formulas

2 = 1; sin(kπ) = 0 cos 2x = cos2x − sin2x

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 41 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 42

Function arcsiney = arcsinx

Trang 43

Function arcosiney = arccosx

Trang 44

Function arctangenty = arctanx

Trang 45

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 45 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 46

4 Function is even, thegraph is symmetricwith respect to the

y−axis

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 46 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 47

Function tanh x = sinh x

cosh x is called hyperbolic tangent.

Function coth x = cosh x

sinh x is called hyperbolic cotangent.

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 47 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 48

Hyperbolic Identities

sinh(−x) = −sinhx cosh(−x) = coshx

cosh2x − sinh2x = 1

sinh(x + y) = sinhx coshy + coshx sinhy cosh(x + y) = coshx coshy + sinhx sinhy

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 48 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 49

MATLAB: FUNCTIONS

Example: syms x;f = xˆ2; g = exp(x);compose(f ,g)

⇒ ans = exp(2 ∗ x).

2 Inverse function: finverse(f ).

Example: syms x; f=exp(x);finverse(f ) ⇒ ans = log(x).

3 Evaluate function at a number: subs(f,x,a).

Example: syms x;f = xˆ2 + 1; subs(f ,x,2) ⇒ ans = 5.

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 49 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 50

MATLAB: MATHEMATICAL EXPRESSION

1 Simplify expression: simplify(f ).

Example: syms x;f = (sin(x))ˆ2 + (cos(x))ˆ2;

simplify(f ) ⇒ ans = 1.

2 Simple expression: simple(f ).

Example: syms x;f = (x + 1) ∗ x ∗ (x − 1); simple(f ) ⇒ ans = xˆ3 − x.

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 50 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 51

MATLAB: INPUT - OUTPUT

1 Input: input(’Input x’, x)

2 Output: disp(’The value of x is’, x)

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 51 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Trang 52

THANK YOU FOR YOUR ATTENTION

Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 52 / 52

SinhVienZone.com https://fb.com/sinhvienzonevn

SinhVienZone.Com

Ngày đăng: 30/01/2020, 22:00

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm