Lê Xuân Đại HCMUT-OISP FUNCTIONS OF SINGLE VARIABLE HCMC — 2016... Lê Xuân Đại HCMUT-OISP FUNCTIONS OF SINGLE VARIABLE HCMC — 2016... Lê Xuân Đại HCMUT-OISP FUNCTIONS OF SINGLE VARIABLE
Trang 1FUNCTIONS OF SINGLE VARIABLE
E LECTRONIC VERSION OF LECTURE
Dr Lê Xuân Đại
HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics
Trang 21 F UNCTIONS OF SINGLE VARIABLE
2 B ASIC PROPERTIES OF FUNCTIONS
Trang 3A function f is a rule that assigns to each element x in
a set X ⊂ R exactly one element y , called f (x) in a set
The set X = {x ∈ R : f (x) is defined}is called the domain
of the function f and is denoted by D(f ). The set
function f and is denoted by E(f ).
f (x)is the value off atxand is read "f of x"
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 3 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 4The set consists of all points (x, f (x)), x ∈ X in the coordinate plane Oxy is called the graph of the function f
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 4 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 5Find the domain and range of function f (x) =px + 2
SOLUTION
1 The domain off consists of all values ofxsuch
interval[−2,+∞)
2 The range off consists of all values ofy such that
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 5 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 6The functions which are defined by different formulas
in different parts of their domain, are called
piecewise defined functions
Trang 7Suppose thaty = f (u),whereuis a function ofx :
Given 2 functions f and g, the composite function
(f ◦ g)(x) = f (g(x))
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 7 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 8Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 8 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 10Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 10 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 11Let f be a one-to-one function with domain D and range E. Then its inverse function f−1 (read: f inverse) has domain E and range D and is defined by
Trang 13Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 13 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 14HOW TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTIONf
1 Writey = f (x)
2 Solve this equation forx in terms ofy (if possible)
3 To expressf−1as a function ofx,interchangex
andy The resulting equation isy = f−1(x)
Trang 15The function f is called periodic of period T > 0 if for
Trang 161 Function f (x) = x is increasing on theR.
2 Function g(x) = x2 is decreasing on the interval
(−∞,0)and increasing on the interval(0, +∞).
3 Function h(x) = c = const, according to the definition is not decreasing and not increasing.
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 16 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 19Let function f : X → Y be defined on a set D ⊂ X.
Function f is called
1 bounded from above if there is a number M ∈ R
such that for all x ∈ D from the domain D one has
f (x) É M;
2 bounded from below if there is a number m ∈ R
such that for all x ∈ D from the domain D one has
f (x) Ê m;
3 bounded if there is a number C > 0 such that for
4 unbounded if for all C > 0, exists x0∈ D such that
|f (x0)| > C.
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 19 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 21LINEAR FUNCTION
mis the slope of the line andbis they−intercept.The slope,m, of the line through(x1, y1)and(x2, y2)isgiven by the following equation, ifx16= x2
m = y2− y1
x2− x1The slope of a line can be interpreted as the rate ofchange in they−coordinates for each 1-unit increase
in the x−coordinates
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 21 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 22Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 22 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 24A function P is called a polynomial if
P(x) = a n x n + a n−1 x n−1 + + a2x2+ a1x + a0
where n is a nonnegative integer and the numbers
a0, a1, a2, , a n are constants called the coefficients of the polynomial.
If the leading coefficienta n6= 0,then thedegreeofthe polynomial isn
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 24 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 25degree3- cubic function
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 25 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 27Caseα = 2 ⇒ y = x2 - square function
Trang 29Caseα =1
2 ⇒ y =px- square root function
1 Domain:D = [0,+∞)
2 Range:E = [0,+∞)
3 Function is increasing on the interval(0, +∞)
4 Function does not have symmetry
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 29 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 30a x .b x = (ab) x
a x
b x =
³a b
Trang 31Function y = a x , (a > 1)
1 Domain:D = R
2 Range:E = (0,∞)
3 Function is increasing on the interval(−∞,+∞)
4 The graph always passes through the point at
(0, 1)
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 31 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 32Function y = a x , (0 < a < 1)
1 Domain:D = R
2 Range:E = (0,+∞)
3 Function is decreasing on the interval(−∞,+∞)
4 The graph always passes through the point at
(0, 1)
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 32 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 33LOGARITHMIC FUNCTIONS
(Read: logarithm ofxwith basea)Logarithmic functiony = log a xis the inverse function
of exponential functiony = a x,this means that, if
logarithmic function is:
D = {x ∈ R | x > 0}.
The graph of logarithmic functiony = log a xis thereflection of the graph of exponential functiony = a x
about the line y =x
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 33 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 34Properties of logarithmic functions
log a (x.y) = log a x + log a y log a
µx y
¶
= log a x − log a y
log aµ 1x
¶
= −log a x log a β x α= α
β log a x
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 34 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 35Function y = log a x, (a > 1)
1 Domain:D = (0,+∞)
2 Range:E = R
3 Function is increasing on the interval(0, +∞)
4 The graph of logarithmic functiony = log a xis thereflection of the graph of exponential function
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 35 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 36Function y = log a x, (0 < a < 1)
1 Domain:D = (0,+∞)
2 Range:E = R
3 Function is decreasing on the interval(0, +∞)
4 The graph of logarithmic functiony = log a xis thereflection of the graph of exponential function
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 36 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 37Function siney = sinx
1 Domain:D = R 2 Range:E = [−1,1]
3 Function is periodic of period2π :
sin(x) = sin(x + 2π) = sin(x − 2π)
4 Function is increasing on the interval¡−π2,π2¢ ,anddecreasing on the interval¡π
Trang 38Function cosiney = cosx
1 Domain:D = R 2 Range:E = [−1,1]
3 Function is periodic of period2π :
cos(x) = cos(x + 2π) = cos(x − 2π)
4 Function is increasing on the interval(−π,0),anddecreasing on the interval(0,π),
5 Function is even, the graph is symmetric withrespect to they−axis
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 38 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 39Function tangenty = tanx = cos x sin x
1 Domain:D = R \©π2 + kπ, k ∈ Zª
2 Range:E = R
3 Function is periodic of periodπ :
tan(x) = tan(x + π) = tan(x − π)
4 Function is increasing on the interval¡−π2,π2¢
5 Function is odd, the graph is symmetric aboutthe originO(0, 0)
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 39 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 40Function cotangenty = cotx = cos x sin x
1 Domain:D = R \ {kπ,k ∈ Z}
2 Range:E = R
3 Function is periodic of periodπ :
cot(x) = cot(x + π) = cot(x − π)
4 Function is decreasing on the interval(0,π)
5 Function is odd, the graph is symmetric aboutthe originO(0, 0)
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 40 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 41Some basic formulas
2 = 1; sin(kπ) = 0 cos 2x = cos2x − sin2x
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 41 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 42Function arcsiney = arcsinx
Trang 43Function arcosiney = arccosx
Trang 44Function arctangenty = arctanx
Trang 45Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 45 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 464 Function is even, thegraph is symmetricwith respect to the
y−axis
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 46 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 47Function tanh x = sinh x
cosh x is called hyperbolic tangent.
Function coth x = cosh x
sinh x is called hyperbolic cotangent.
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 47 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 48Hyperbolic Identities
sinh(−x) = −sinhx cosh(−x) = coshx
cosh2x − sinh2x = 1
sinh(x + y) = sinhx coshy + coshx sinhy cosh(x + y) = coshx coshy + sinhx sinhy
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 48 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 49MATLAB: FUNCTIONS
Example: syms x;f = xˆ2; g = exp(x);compose(f ,g)
⇒ ans = exp(2 ∗ x).
2 Inverse function: finverse(f ).
Example: syms x; f=exp(x);finverse(f ) ⇒ ans = log(x).
3 Evaluate function at a number: subs(f,x,a).
Example: syms x;f = xˆ2 + 1; subs(f ,x,2) ⇒ ans = 5.
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 49 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 50MATLAB: MATHEMATICAL EXPRESSION
1 Simplify expression: simplify(f ).
Example: syms x;f = (sin(x))ˆ2 + (cos(x))ˆ2;
simplify(f ) ⇒ ans = 1.
2 Simple expression: simple(f ).
Example: syms x;f = (x + 1) ∗ x ∗ (x − 1); simple(f ) ⇒ ans = xˆ3 − x.
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 50 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 51MATLAB: INPUT - OUTPUT
1 Input: input(’Input x’, x)
2 Output: disp(’The value of x is’, x)
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 51 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com
Trang 52THANK YOU FOR YOUR ATTENTION
Dr Lê Xuân Đại (HCMUT-OISP) FUNCTIONS OF SINGLE VARIABLE HCMC — 2016 52 / 52
SinhVienZone.com https://fb.com/sinhvienzonevn
SinhVienZone.Com