1. Trang chủ
  2. » Thể loại khác

Final Exam (3 hours) Applied Complex Varibles, Fall 2013

5 47 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

1 1. Expand f (z) = z(z − 1)(z − 2) in a Laurent series for the domain {z ∈ C | 1 < |z| < 2}. 1 2. Expand f (z) = z2 + 1 in a Taylor series at z = 2i. Compute f (2013)(2i). 3. (a) State Cauchy’s integral formula, (b) Evaluate C ez z2 − 3z + 2 dz, where C is the circle {z ∈ C | |z| = 32}, described in the counterclockwise direction. 4. Prove the identity cos(3z) = 4 cos3(z) − 3 cos(z). 5. Prove that the function f (z) = z z 2 is differentiable at z = 0 but it

Trang 1

| |

0

}

{ ∈ | | | }

Final Exam

(3 hours) Applied Complex Varibles, Fall 2013

1

1 Expand f (z) = 1 < |z| < z (z − 1)(z − 2) in a Laurent series for the domain {z ∈ C |

2}

1

2 Expand f (z) = z2

+ 1

in a Taylor series at z = 2i Compute f (2013)(2i).

3. (a) State Cauchy’s integral formula,

(b) Evaluate

C

e z

z2 − 3z + 2 dz , where C is the circle {z ∈ C | |z| = 3/2},

described

in the counterclockwise direction

4 Prove the identity cos(3z) = 4 cos

3(z) − 3 cos(z).

5 Prove that the function f (z) = z z

2 is differentiable at z = 0 but it is not

analytic at

z = 0

6 Suppose that z0 is a pole of order m (m ∈ N

) of function f (z).

(a) Prove that there exists an analytic function ϕ defined on a

neighborhood of z0

satisfying ϕ(z0) ƒ= 0 such that

ϕ (z)

f (z) =

(z − z ) m

(b) Show that lim f (z) =

z→z0

7 Let C ρ be the semi-circle z C z 1 = ρ, Im(z) 0

(ρ > 0), described in the clockwise direction Show that

lim

ρ→0

+

C

ρ

1 +

z − 1

e z

z + 1

Σ

dz = −πi

8 Let C ρ be the circle z C z = ρ (ρ > 0), described in the

counterclockwise direction Find the values of the following integerals:

C2 1

Trang 2

z2013 +

1 dz

Trang 3

(b)

(c)

C2

e z

(z2 + 1)(z + 3) dz

(1 + z + z2)(e 1

+ e1

)dz.

C2

9. Calculate the following

integrals: (a)

+∞ x4 + x1 2 + 1 dx (b)

0 +∞ x2 + 1

x4 + 1 dx (c)

0 +∞ sin( x )

dx

(d

)

(e

)

, where −1 < a <

1

+∞ x a

x2 + 4 dx

+∞ ln( x )

x2 + 4 dx (f)

0

+∞ cos( x )

x2 + 9 dx (g)

0 +∞

sin( x )

x2 + x + 1 dx

(h)

−∞

+∞ x sin( x )

x2 + 16 dx (i)

0 +∞ 1 cos( x )

0

10.Find the poles and residues of the following functions:

0

Trang 4

(b)

(c)

(d)

(e

)

1

f1(z) =

(z2 + 1)2 1

f2(z) =

cos(z)

z

f2(z) =

sin(z)

1

f3(z) =

cos2(z)

f4(z) =

e z − 1 − z .

(f)

f (z) = tan(z)

11.Find the values of the following integerals:

(a)

2 + cos( x )

dx

0 2 + sin(x)

(b)

dx

0 2 + sin(x)

(c)

dx

0 2 − cos(x)

dx

1 + a cos(x) (−1 < a < 1)

(e

)

0

π

dx

a2 + sin2(x) (a > 0)

(f)

0

π

dx

12.State Rouch´e’s

theorem

0 4 + sin 2(x)

Trang 5

{ ∈ | }

13.Determine the number of zeros, counting multiplicities, of the following

polynomials:

(a) z2013 + 2015z2015 + 2011z2011 + 2 in {z ∈ C | |z| < 1}

(b) z3 + 4z2 − 2z + 3 in {z ∈ C | |z| < 2}.

14.Determine the number of roots, counting multiplicities, of the following

equations:

(a) z2013 + 6z3 + z + 3 = 0 in the annulus {z ∈ C | 1 < |z| < 2}

(b) 0.9e −z − 1 = 2z in the domain {z ∈ C | |z| < 1, Rez < 0}.

15 Find the linear fractional transformation that maps the points z = 0, z 1 = 1, z2

3 = i

onto the points w1 = 0, w2 = i, w3 = 1

16 Find the image of the upper half plane H = {z ∈ C | Im(z) > 0} under the

transfor- mation w = i 1 + z 1 − z

17 Find the image of the semi-infinite trip D = z C 0 < Re(z) < π,

Im(z) > 0 under the map w = cos(z).

18 Find a one to one mapping w = f (z) that maps the domain D = {z ∈ C

| Im(z) >

0, |z| < 1} \ [i/2, i] onto the upper half plane H = {w ∈ C | Im(w) > 0}.

——————–End———————

Ngày đăng: 05/09/2019, 23:18

TỪ KHÓA LIÊN QUAN

w