1. Trang chủ
  2. » Giáo án - Bài giảng

D01 tính toán độ dài hình học (đơn thuần) muc do 2

8 99 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 1,02 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Gọi lần lượt là hình chiếu của trên và ta Trong tam giác vuông tại và tam giác vuông tại ta có:.. Gọi lần lượt là hình chiếu của trên và ta Trong tam giác vuông tại và tam giác vuông tại

Trang 1

Câu 6852: [2H1-4.1-2] [SỞ GD-ĐT ĐỒNG NAI] Cho hình tứ diện có vuông góc với

với Gọi , tương ứng là trung điểm của hai cạnh , Tính khoảng cách

từ điểm đến mặt phẳng theo

Lời giải Chọn A

Cách 1: Vì vuông góc với , vuông góc với nên Gọi K là trung điểm của suy ra Gọi lần lượt là hình chiếu của trên và ta

Trong tam giác vuông tại và tam giác vuông tại ta có:

Cách 2: Vì vuông góc với , vuông góc với nên Gọi là trung điểm của suy ra Chọn hệ trục tọa độ như hình vẽ ta có:

Câu 6852: [HH12.C1.4.D01.b] [SỞ GD-ĐT ĐỒNG NAI] Cho hình tứ diện có vuông

góc với , vuông góc với , vuông góc với ; biết , ,

, với Gọi , tương ứng là trung điểm của hai cạnh , Tính khoảng cách từ điểm đến mặt phẳng theo

Lời giải Chọn A

Trang 2

Cách 1: Vì vuông góc với , vuông góc với nên Gọi K là trung điểm của suy ra Gọi lần lượt là hình chiếu của trên và ta

Trong tam giác vuông tại và tam giác vuông tại ta có:

Cách 2: Vì vuông góc với , vuông góc với nên Gọi là trung điểm của suy ra Chọn hệ trục tọa độ như hình vẽ ta có:

Câu 44: [2H1-4.1-2] (THPT Chuyên Quốc Học Huế-Lần 3-2018-BTN) Cho hình chóp tứ

giác đều có góc giữa mặt bên và mặt đáy bằng Biết rằng mặt cầu ngoại tiếp hình chóp đó

có bán kính Tính độ dài cạnh đáy của hình chóp tứ giác đều nói trên

Lời giải Chọn D

Trang 3

Gọi là trung điểm cạnh , dựng suy ra là tâm mặt cầu ngoại tiếp khối chóp

Tam giác đồng dạng với tam giác suy ra

Vậy độ dài cạnh đáy là

Câu 772 [2H1-4.1-2] (THPT CHUYÊN PHAN BỘI CHÂU) Hình chóp tứ giác đều

góc tạo bởi mặt bên và mặt đáy bằng Thể tích của hình chóp là Hỏi cạnh hình vuông mặt đáy bằng bao nhiêu?

Lời giải Chọn C

Gọi là tâm hình vuông , là trung điểm

Vì là hình chóp đều nên là đường cao của hình chóp

Ta có :

Câu 3 [2H1-4.1-2] (THPT TIÊN DU SỐ 1) Độ dài các đường chéo của các mặt của một hình hộp

chữ nhật bằng Diện tích toàn phần của khối hộp chữ nhật đó bằng:

Câu 9: [2H1-4.1-2] (THPT Chuyên ĐHSP Hà Nội - Lần I - 2017 - 2018) Cho hình hộp xiên

giữa hai đường thẳng và bằng

Lời giải Chọn B

Trang 4

Gọi là trọng tâm tam giác , là trung điểm

Ta có tứ diện là tứ diện đều cạnh nên

Suy ra

(do là hình thoi)

Câu 6412: [2H1-4.1-2] [BTN 163 - 2017] Cho hình chóp có đáy là tam giác đều cạnh

, cạnh bên vuông góc với đáy Biết hình chóp có thể tích bằng Tính khoảng cách từ điểm đến mặt phẳng

Lời giải Chọn B

Gọi các điểm như hình vẽ

Trang 5

Trong tam giác vuông SAI ta có

Câu 6600:[2H1-4.1-2] [THPT Chuyên Bình Long – 2017] Cho hình chóp có đáy là hình chữ

nhật với cạnh , Hình chiếu của lên mặt phẳng là trung điểm của , tạo với đáy một góc bằng Tính khoảng cách từ điểm tới mặt phẳng

Lời giải Chọn A

Gọi là trung là trung điểm của Gọi là hình chiếu của lên

Theo giả thiết tam giác vuông cân tại H Do đó ;

Trong tam giác ta có :

Câu 6779: [2H1-4.1-2] [THPT Chuyên KHTN-2017] Cho một khối lập phương biết rằng khi tăng

độ dài cạnh của khối lập phương thêm thì thể tích của nó tăng thêm Hỏi cạnh của khối lập phương đã cho bằng:

Lời giải Chọn D

Gọi là độ dài cạnh của khối lập phương, với

Khi đó thể tích của nó là

Trang 6

Sau khi tăng độ dài cạnh thêm , thì thể tích mới là:

Câu 6792: [2H1-4.1-2] [Cụm 4 HCM-2017] Cho biết thể tích của một khối hộp chữ nhật là đáy

là hình vuông cạnh Khi đó diện tích toàn phần của hình hộp bằng

Lời giải Chọn D

Đáy là hình vuông cạnh nên diện tích đáy là

Đường cao là:

Câu 6799: [2H1-4.1-2] [Cụm 4 HCM-2017] Cho biết thể tích của một khối hộp chữ nhật là đáy

là hình vuông cạnh Khi đó diện tích toàn phần của hình hộp bằng

Lời giải Chọn D

Đáy là hình vuông cạnh nên diện tích đáy là

Đường cao là:

Câu 6837 [2H1-4.1-2][THPTTiênLãng-2017]Cho hình chóp tứ giác đều có độ dài cạnh bên và cạnh

đáy đều bằng Khoảng cách giữa đường thẳng và mặt phẳng là:

Lời giải ChọnA

.

Câu 6852: [2H1-4.1-2] [SỞ GD-ĐT ĐỒNG NAI] Cho hình tứ diện có vuông góc với

với Gọi , tương ứng là trung điểm của hai cạnh , Tính khoảng cách

từ điểm đến mặt phẳng theo

Trang 7

A B C D

Lời giải Chọn A

Cách 1: Vì vuông góc với , vuông góc với nên Gọi K là trung điểm của suy ra Gọi lần lượt là hình chiếu của trên và ta

Trong tam giác vuông tại và tam giác vuông tại ta có:

Cách 2: Vì vuông góc với , vuông góc với nên Gọi là trung điểm của suy ra Chọn hệ trục tọa độ như hình vẽ ta có:

Câu 18: [2H1-4.1-2](THPT AN LÃO-HẢI PHÒNG-Lần 3-2018-BTN) Cho hình chóp có đáy

Lời giải

Chọn D

Trang 8

Câu 18: [2H1-4.1-2] (THPT THÁI PHIÊN-HẢI PHÒNG-Lần 4-2018-BTN) Cho hình chóp

Lời giải Chọn B

Ngày đăng: 15/02/2019, 20:25

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w