1. Trang chủ
  2. » Giáo án - Bài giảng

D02 các bài toán tiếp tuyến (có tham số) muc do 3

13 107 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 1,69 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Có bao nhiêu giá trị thực của để đồ thị tiếp xúc với Lời giải Chọn B Vì hàm số đã cho là hàm số bậc ba nên đồ thị hàm số đã cho tiếp xúc với trục hoành khi nghiệm phân biệt không thỏa m

Trang 1

Câu 3: [2D1-7.2-3] (THPT Lê Xoay – Vĩnh Phúc – Lần 3 – 2018) Cho hàm số có đồ thị

và đường thẳng ( là tham số thực) Gọi , là hệ số góc của tiếp tuyến tại giao điểm của và Khi đó bằng

Lời giải Chọn B

Hoành độ giao điểm của và là nghiệm của phương trình:

( luôn có hai nghiệm phân biệt)

Gọi , là hai nghiệm phân biệt của phương trình thì

Câu 13: [2D1-7.3](CỤM CÁC TRƯỜNG CHUYÊN ĐỒNG BẰNG SÔNG CỬU LONG-LẦN

2-2018) Cho hàm số Có bao nhiêu giá trị thực của để đồ thị tiếp xúc với

Lời giải Chọn B

Vì hàm số đã cho là hàm số bậc ba nên đồ thị hàm số đã cho tiếp xúc với trục hoành khi

nghiệm phân biệt ( không thỏa mãn phương trình)

Bảng biến thiên

Trang 2

-∞

f(x0)

-∞

+∞

-∞

f(x)

-Dựa vào bảng biến thiên, chỉ có giá trị của thỏa mãn bài toán

Câu 41: [2D17.23] (THPT Chuyên Lê Quý Đôn Đà Nẵng Lần 1 2017 2018

-BTN) Với giá trị nào của thì đường thẳng tiếp xúc với đồ thị hàm số

.

Lời giải Chọn D

Đường thẳng tiếp xúc với đồ thị hàm số khi và chỉ khi hệ phương trình sau có nghiệm:

Do đó, giá trị cần tìm của là :

Câu 12: [2D1-7.2-3] (Toán Học Tuổi Trẻ - Số 5 - 2018 - BTN) Gọi là tập tất cả các giá trị thực

của tham số sao cho đường thẳng cắt đồ thị tại ba điểm phân biệt , , mà tiếp tuyến với tại và tại vuông góc với nhau Tính tổng các phần tử của

Lời giải Chọn A

Xét phương trình hoành độ giao điểm của và :

Trang 3

(*)

Để đường thẳng cắt đồ thị tại ba điểm phân biệt thì phương trình (*) có ba nghiệm phân biệt có hai nghiệm phân biệt

Do tiếp tuyến với tại và tại vuông góc với nhau nên

Với là hệ số góc tiếp tuyến với tại , là hệ số góc tiếp tuyến với tại

Theo định lý vi-et ta có

khi đó ta có

Câu 34: [2D1-7.2-3] (THPT Chuyên Lê Quý Đôn - Q Trị - HKII - 2016 - 2017 - BTN) Tìm tham số

để đồ thị hàm số tiếp xúc với trục

Lời giải Chọn B

Đồ thị hàm số tiếp xúc với trục Hệ phương trình sau có nghiệm

Trang 4

Vậy hoặc đồ thị hàm số tiếp xúc lần lượt tại các điểm ,

* Tổng quát: Đồ thị hàm số bậc ba có điểm chung với trục Ox tại điểm và tiếp xúc với thì ta có cách giải tổng quát:

+ Phân tích

+ Đồ thị hàm số tiếp xúc Phương trình có nghiệm kép hoặc nhận làm nghiệm

Câu 36: [2D1-7.2-3] (THPT Đức Thọ - Hà Tĩnh - Lần 1 - 2017 - 2018 - BTN) Cho hàm số

Biết rằng và là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm song song với đường thẳng Khi đó giá trị của bằng

Hướng dẫn giải Chọn A

Câu 37: [2D1-7.2-3] [SGD NINH BINH _ 2018 _ BTN _ 6ID _ HDG] Có bao nhiêu giá trị nguyên

dương của tham số để trên đồ thị hàm số có hai điểm nằm về hai phía của trục tung mà tiếp tuyến của tại hai điểm đó cùng vuông góc với

Lời giải Chọn C

Ta có Đường thẳng có hệ số góc

Tiếp tuyến của tại vuông góc với nên

Trang 5

YCBT có hai nghiệm trái dấu

Do nguyên dương nên hoặc

Lời giải Chọn D

tiếp xúc đường thẳng tại điểm có hoành độ khi hệ sau có nghiệm

Thay vào ta được:

trị sao cho trên đồ thị tồn tại một điểm duy nhất có hoành độ âm mà tiếp tuyến tại đó

Lời giải Chọn D

có hệ số góc  tiếp tuyến có hệ số góc Gọi là hoành độ tiếp điểm thì:

Theo bài toán, phương trình có đúng một nghiệm âm

Nếu thì dễ thấy phương trình có nghiệm là hay

Trang 6

Câu 2292 [2D1-7.2-3] Cho hàm số có đồ thị là Tìm các giá

trị sao cho trên đồ thị tồn tại đúng hai điểm có hoành độ dương mà tiếp tuyến tại đó

Lời giải Chọn D

Theo yêu cầu bài toán  phương trình có đúng 2 nghiệm dương phân biệt

Câu 2303 [2D1-7.2-3] Tìm để đồ thị hàm số tiếp xúc với parabol

Lời giải Chọn C

Hai đường cong đã cho tiếp xúc nhau tại điểm có hoành độ khi hệ phương trình:

có nghiệm

Vậy là giá trị cần tìm

Câu 2304 [2D1-7.2-3] Tìm để đồ thị hai đồ thị hàm số

tiếp xúc với nhau

Lời giải Chọn D

và tiếp xúc nhau tại điểm có hoành độ khi hệ phương trình sau có nghiệm :

có nghiệm

Trang 7

Ta có: Với thay vào , ta có:

( vì hệ vô nghiệm) Thay vào (*) ta được:

Vậy là những giá trị cần tìm

Câu 2309 [2D1-7.2-3] Cho hàm số có đồ thị là và điểm Xác định để từ

kẻ được tiếp tuyến đến sao cho hai tiếp điểm tương ứng nằm về hai phía đối với trục

Lời giải Chọn D

Cách 1: Gọi điểm Tiếp tuyến tại của có phương trình:

(với ) (*)

Yêu cầu bài toán có hai nghiệm khác sao cho

Vậy là những giá trị cần tìm

Cách 2: Đường thẳng đi qua , hệ số góc có phương trình:

tiếp xúc đồ thị tại điểm có hoành độ khi hệ có nghiệm

Thế vào phương trình thứ nhất, ta được:

Trang 8

(*).

Để từ kẻ được hai tiếp tuyến thì (*) có hai nghiệm phân biệt khác

Khi đó tọa độ hai tiếp điểm là: với là nghiệm của (*) và

Để nằm về hai phía thì

Kết hợp với ta có là những giá trị cần tìm

xúc với trục hoành

Lời giải Chọn D

tiếp xúc với trục hoành tại điểm có hoành độ khi hệ

có nghiệm Giải hệ

Hệ

Thay vào , ta được:

Câu 2311 [2D1-7.2-3] Gọi là đồ thị của hàm số Tìm tham số để

tiếp xúc với đường thẳng tại hai điểm phân biệt

Trang 9

A B C D

Lời giải Chọn D

nghiệm

Thay vào (1) ta được

Thay vào (1) ta được

Khi thì tiếp xúc với tại chỉ một điểm nên không thỏa mãn yêu cầu của bài toán

Khi thì , suy ra tiếp xúc với tại hai điểm ( )

Vậy các giá trị cần tìm là

Câu 2315 [2D1-7.2-3] Tìm tham số để đồ thị hàm số với cắt trục hoành

tại điểm phân biệt sao cho tiếp tuyến tại điểm vuông góc với nhau

Lời giải Chọn A

Hàm số cắt trục hoành thại hai điểm phân biệt có hệ số góc là

Theo bài toán, có hai nghiệm phân biệt khác

Theo đề, tiếp tuyến tại và vuông góc nhau tức , tìm được

Câu 41: [2D1-7.2-3] (THPT Chuyên Võ Nguyên Giáp - QB - Lần 1 - 2017 - 2018 - BTN) Cho hàm

số có đồ thị và điểm Gọi là tập hợp tất cả các giá trị thực của

để có đúng ba tiếp tuyến của đi qua Tập hợp bằng

Lời giải

Trang 10

Chọn C

Giả sử là đường thẳng đi qua và có hệ số góc là , khi đó phương trình đường thẳng

Để là tiếp tuyến của thì hệ phương trình có nghiệm

Thay vào ta được

Để từ kẻ được ba tiếp tuyến với đồ thị thì phương trình có hai nghiệm phân biệt

Câu 43: [2D1-7.2-3] (SGD - Bắc Ninh - 2017 - 2018 - BTN) Gọi là tập các giá trị của tham số

để đồ thị hàm số có đúng một tiếp tuyến song song với trục Tìm tổng các phần tử của

Lời giải Chọn B

Hệ số góc tiếp tuyến của đồ thị hàm số tại có dạng:

Tiếp tuyến của đồ thị hàm số song song với trục thì

Tại thì phương trình tiếp tuyến là :

Tại thì phương trình tiếp tuyến là :

Tại thì phương trình tiếp tuyến là :

Theo đề, chỉ có đúng một tiếp tuyến song song với trục nên:

Vậy do đó ta chọn phương án B.

Trang 11

Câu 36: [2D1-7.2-3] (PTNK Cơ Sở 2 - TPHCM - 2017 - 2018 - BTN) Cho đồ

thị và điểm Gọi là tập tất cả các giá trị thực của để có đúng tiếp tuyến của qua Tổng giá trị tất cả các phần tử của bằng

Lời giải Chọn C

Gọi là đường thẳng qua có hệ số góc

là tiếp tuyến của khi hệ phương trình sau có nghiệm

Để có đúng tiếp tuyến của qua thì phương trình (*) có 2 nghiệm

có 1 cực trị thuộc trục hoành

Câu 46: [2D1-7.2-3] (THPT Quỳnh Lưu 1 - Nghệ An - Lần 2 - 2017 - 2018 - BTN)

Cho hàm số có đồ thị là Tìm để tiếp tuyến có hệ

số góc nhỏ nhất của đồ thị vuông góc với đường thẳng

Lời giải Chọn C

Tiếp tuyến của có hệ số góc nhỏ nhất là

Trang 12

Bài ra nên

Vậy

cho hai tiếp điểm nằm về hai phía của trục hoành?

Lời giải Chọn C

phân biệt khác

Hai tiếp điểm nằm về hai phía của trục hoành khi

Câu 6: [2D1-7.2-3] (THPT Sơn Tây - Hà Nội - 2018 – BTN – 6ID – HDG) Cho hàm số

Gọi là tập tất cả các giá trị của để từ điểm

kẻ được đúng tiếp tuyến với Tổng tất cả các phần tử của tập là? :

Lời giải Chọn D

Trang 13

Ta có:

Phương trình tiếp tuyến đi qua điểm là:

Điều kiện tiếp xúc của và tiếp tuyến là:

Thay vào ta có:

Để qua kẻ được đúng tiếp tuyến với thì phương trình có đúng nghiệm phân biệt

là phương trình hoành độ giao điểm của hai đồ thị

Bảng biến thiên:

Dựa vào bảng biến thiên: để có đúng nghiệm phân biệt thì:

Vậy tổng các phần tử của là:

Ngày đăng: 15/02/2019, 14:45

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w