+ Phán ánh duy nhất một giai đoạn của quá trình sản xuất với một đầu vào.
Trang 1Kinh tế lượng Nhóm 9 GVHD: PGS.TS Phạm Văn Hùng
Thứ 7, tiết 10, A202
HỌC VIỆN NÔNG NGHIỆP VIỆT NAM
Trang 2Câu hỏi: nhóm 9
Nếu một người xây dựng mô hình cho sản xuất lúa như sau:
Ln (Y) = β0 + β1 Ln(X1) + β2 Ln(X2) + β3 Ln(X3) + ε
Trong đó: Y = năng suất lúa (kg/ha);
X1 = mức bón phân (kg/ha);
X2 = chi phí bằng tiền (ngoài phân bón) (1000đ/ha);
X3 = chi phí lao động (ngày công/ha);
(Câu1) Hãy cho biết mô hình trên thuộc dạng mô hình nào? Tại sao lại xây dựng như vậy?
(Câu2) Hãy nêu dấu của tất cả các tham số ước lượng (theo lý thuyết)?
(Câu3) Sử dụng số liệu của bài nhóm 7, hãy ước lượng mô hình từ mục (Câu1) đã thảo luận?
(Câu4) Kiểm định và phân tích mô hình ước lượng?
Trang 3Trả lời: Câu 1
Mô hình sản xuất :
Ln (Y) =β0 +β1 Ln (X1) + β2 Ln (X2) + β3 Ln (X3) + ԑ
Mô hình trên thuộc mô hình kinh tế lượng tuyến tính ,được biến đổi từ mô hình :
Y=AX1β1.X2β2 Xk βk ԑe ( β0 = LnA ) là dạng phi tuyến
Đây là dạng tuyến tính Log ,với các biến là hệ số hồi quy riêng chính là hệ số co giãn
=>Mô hình độ co giãn
Xây dựng mô hình như vậy vì :
+ Mô hình xây dựng lên đơn giản
+ Gía trị của các tham số ước lượng duy nhất với một tập hợp số liệu
+ Phán ánh duy nhất một giai đoạn của quá trình sản xuất (với một đầu vào )
Trang 4Câu 2:
- β0 là tham số kỹ thật, cho biết giá trị trung bình của năng suất lúa (Y) bằng bao nhiêu khi tất cả các biến độc lập Xj (j= 1,2,3) đều bằng 0 Theo lý thuyết thì β0 luôn dương (+)
- βj (j=1,2,3) là hệ số hồi quy riêng của Xj, βj cho biết trung bình của năng suất lúa (Y) sẽ tăng (hay giảm) bao nhiêu đơn vị khi Xj tăng (hay giảm) 1 đơn vị, là hàn sản xuất cho nên tham số βj không thay đổi do đó dấu của các tham số luôn dương (+) => Như vậy Y luôn dương (+)
- β1 là hệ số co giãm của năng suất lúa (Y) đối với mức phân bón khi X2 và X3 không đổi
- β2 là hệ số co giãn cuả năng suất lúa (Y) đối với mức chi phí bằng tiền khi X1 và X3 không đổi
- β3 là hệ số co giãn của năng suất lúa (Y) đối với mức chi phí lao động khi X1 và X2 không đổi
Trang 5Câu 3:
Dựa vào kết quả nhóm 7:
Ta có, mô hình hồi quy tuyến tính sau:
Y = B0 + B1.X1 + B2.X2 + B3.X3 + B4.X4 + B5.X5 + B6.X6 + B7.X7 + B8.X8 + B9.X9 + B10.Di + U
2 = = ∑ ki yi = β1 + ∑ k.xi
xi = Xi -
yi = Yi -
k =
Var ( ) =
Thay X1, X2, X3
Để kiểm định giả thiết:
H0: B2 = B3 = 0
= = 13,203
Trang 6Câu 4:
Biến đổi mô hình Ln(Y) là Y*
gọi Ln(Xi) là Ti với i = 1,3
Ta có mô hình: Y* = βo + β1.T1 + β2.T2 + β3.T3 + e
Sử dụng dữ liệu từ câu 3,
ESS = 10 ; KSS = 39
R2 = 0,7719749 R2 = 77,19%
Ta tiến hành kiểm định F:
Giả sử: H0 : R2 = 0
H1 : R2 1
F =
Thay vào kết quả, ta có:
F = = 16,92
Trang 7Câu 4:
So sánh:
F F113,203 , 5
F < F113,203 , 5 Chấp nhận H1
Từ giá trị kiểm định, ta có nhận xét:
- Độ chặt chẽ của mô hình là 77,19%
- Tỷ lệ thay đổi của Y là 77,19%