1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

LABEX 4.1 Xử lý tín hiệu số

16 215 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 215 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Copy from figure windows and paste... The plot of the gain response of the stable transfer function HBPz obtained using< Insert MATLAB figures here.. Copy from figure windows and paste..

Trang 1

LINEAR, TIME­INVARIANT DISCRETE­TIME SYSTEMS:

FREQUENCY­DOMAIN REPRESENTATIONS

4.1 TRANSFER FUNCTION AND FREQUENCY RESPONSE

Project 4.1 Transfer Function Analysis

Answers:

Q4.1

The modified Program P3_1 to compute and plot the magnitude and phase spectra of a

% Program P3_1

% Evaluation of the DTFT

clf;

% Compute the frequency samples

of the DTFT

w = 0:8*pi/511:2*pi;

m = 5;

num =ones(1,m)/m;

h = freqz(num, 1, w);

% Plot the DTFT

subplot(2,1,1)

plot(w/pi,abs(h));grid title('Magnitude Spectrum | H(e^{j\omega})|')

xlabel('\omega /\pi');

ylabel('Amplitude');

subplot(2,1,2) plot(w/pi,angle(h));grid title('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi');

ylabel('Phase in radians');

0

0.5

j )|

  / 

­4

­2

0

2

j )]

  / 

The types of symmetries exhibited by the magnitude and phase spectra are due to

­

1

Trang 2

The results of Question Q2.1 can now be explained as follo -

0

0.5

j )|

­2

­1

0

1

j )]

0

0.5

j )|

  / 

­4

­2

0

2

j )]

  / 

nhau

Trang 3

I shall choose the filter of Question Q4.2 for the following reason ­  Vì đáp  ng pha  ứ

t t h n ố ơ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8 Magnitude Spectrum |H(e

j )|

  /

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­1

­0.5

0

0.5

1 Phase Spectrum arg[H(e

j )]

  /

Questions 4.2 and 4.3 obtained using the program developed in Question Q3.50

0 10 20 30 40 50 60 70 80 90 100

­1.2

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8 impule

 /

3

Trang 4

0 10 20 30 40 50 60 70 80 90 100

­4

­3

­2

­1

0

1

2

3

4

5

  / 

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2 2.5

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

Real Part

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2 2.5

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

Real Part

Trang 5

4.2 TYPES OF TRANSFER FUNCTIONS

Project 4.2 Filters

% Program P4_1

% Impulse Response of Truncated Ideal Lowpass Filter

clf;

fc = 0.25;

n = [-6.5:1:6.5];

y = 2*fc*sinc(2*fc*n);k = n+6.5;

stem(k,y);title('N = 13');axis([0 13 -0.2 0.6]);

xlabel('Time index n');ylabel('Amplitude');grid;

Answers:

­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

Time index n

[-6.5:1:6.5];

response of the FIR lowpass filter of Project 4.2 with a length of 20 and a cutoff

% Program P4_1

% Impulse Response of Truncated Ideal Lowpass Filter

clf;

fc = 0.45;

n = [-10:1:10];

y = 2*fc*sinc(2*fc*n);k = n+10;

stem(k,y);title('N = 20');axis([0 20 -0.2

1]);

xlabel('Time index

n');ylabel('Amplitude');grid;

5

­0.2 0 0.2 0.4 0.6 0.8

N = 20

Trang 6

The plot generated by running the modified program is given below:

response of the FIR lowpass filter of Project 4.2 with a length of 15 and a cutoff

% Program P4_1

% Impulse Response of Truncated Ideal

Lowpass Filter

clf;

fc = 0.65;

n = [-7.5:1:7.5];

y = 2*fc*sinc(2*fc*n);k = n+7.5;

stem(k,y);title('N = 15');axis([0 20

-0.2 0.6]);

xlabel('Time index

n');ylabel('Amplitude');grid;

The plot generated by running the

Q4.10 The MATLAB program to compute and plot the amplitude response of the FIR

% Program P4_1

% Impulse Response of Truncated Ideal

Lowpass Filter

clf;

fc = 0.25;

n = [-6.5:1:6.5];

y = 2*fc*sinc(2*fc*n);k = n+6.5;

plot(k,y);title('N = 13');axis([0 13 -0.2

0.6]);

xlabel('Time index

n');ylabel('Amplitude');grid;

Plots of the amplitude response of the

N = 15

­0.2

­0.1 0 0.1 0.2 0.3 0.4 0.5

Time index n

­0.2

­0.1 0 0.1 0.2 0.3 0.4 0.5

Time index n

Trang 7

0 2 4 6 8 10 12

­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time index n

N= 19

­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

0.6 N = 19

Time index n

% Program P4_2

% Gain Response of a Moving

Average Lowpass Filter

clf;

M = 2;

num = ones(1,M)/M;

[g,w] = gain(num,1);

plot(w/pi,g);grid axis([0 1 -50 0.5]) xlabel('\omega /\pi');ylabel('Gain in dB');

title(['M = ', num2str(M)])

Answers:

Q4.11 A plot of the gain response of a length-2 moving average filter obtained using

7

Trang 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­50

­45

­40

­35

­30

­25

­20

­15

­10

­5

0

  / 

Q4.12 The required modifications to Program P4_2 to compute and plot the gain response

% Program P4_2

% Gain Response of a Moving Average Lowpass Filter

clf;

M = 2;

num =[1 1]/M;

[g,w] = gain(num,1);

plot(w/pi,g);grid

axis([0 1 -50 0.5])

xlabel('\omega /\pi');ylabel('Gain in dB');

title(['M = ', num2str(M)])

The plot of the gain response for a cascade of 3 sections obtained using the

­50

­45

­40

­35

­30

­25

­20

­15

­10

­5

0

  / 

M = 3

Q4.13 The required modifications to Program P4_2 to compute and plot the gain response

% Program P4_2

% Gain Response of a Moving Average Lowpass Filter

Trang 9

M = 5;

num =[1 -1 1 -1 1]/M;

[g,w] = gain(num,1);

plot(w/pi,g);grid

axis([0 1 -50 0.5])

xlabel('\omega /\pi');ylabel('Gain in dB');

title(['M = ', num2str(M)])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­50

­45

­40

­35

­30

­25

­20

­15

­10

­5

0

M = 5

Q4.14 From Eq (4.16) for a 3-dB cutoff frequency c at 0.45 we obtain  = 0.0787

function of the first-order IIR lowpass and highpass filters, respectively, given by

HLP(z) = 

 

HHP(z) =

 

9

Trang 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­50

­45

­40

­35

­30

­25

­20

­15

­10

­5 0

 /

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­50

­45

­40

­35

­30

­25

­20

­15

­10

­5

0

 /

A plot of the magnitude response of

From this plot we observe that the two filters

A plot of the sum of the

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

Q4.15 From Eq (4.24), we get substituting K = 10, B = 1.86

of 10 IIR lowpass filters as

1 z1

1 –  z1









10

 (7.85+7.85z­1)/(2+13.7z­1)

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

­0.6

­0.5

­0.4

­0.3

­0.2

­0.1 0 0.1

  / 

M = 5

Trang 11

Using this value of  in Eq (4.15) we arrive at the transfer function of a first-order IIR lowpass filter

HLP,1(z)  1 – 

1  z1

1 –  z1  (7.7+7.7z­1)/(2+13.4z­1)

< Insert

Q4.16 Substituting o = 0.61 in Eq (4.19) we get  cos(0.61)  

transfer function of the IIR bandpass transfer function

HBP,1(z) = 

transfer function of the IIR bandpass transfer function

HBP,2(z) = 

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­50

­45

­40

­35

­30

­25

­20

­15

­10

­5 0

 /

M = 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­50

­45

­40

­35

­30

­25

­20

­15

­10

­5 0

 /

 HHP

Trang 12

The plot of the gain response of the stable transfer function HBP(z) obtained using

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

of a stable IIR bandstop filter as

MATLAB is shown below:

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

From these plots we observe that the designed filters do/do not meet the

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

Q4.17 The transfer function of a comb filter derived from the prototype FIR lowpass filter

of Eq (4.38) is given by

G(z) = H0(zL) =  Plots of the magnitude response of the above comb filter for the following values of

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

Trang 13

From these plots we observe that the comb filter has _ notches at k = _

Q4.18 The transfer function of a comb filter derived from the prototype FIR highpass filter

G(z) = H1(zL) =  Plots of the magnitude response of the above comb filter for the following values of

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

_

Q4.19 A copy of Program P4_3 is given below:

% Program P4_3

% Zero Locations of Linear Phase FIR Filters

clf;

b = [1 -8.5 30.5 -63];

num1 = [b 81 fliplr(b)];

num2 = [b 81 81 fliplr(b)];

num3 = [b 0 -fliplr(b)];

num4 = [b 81 -81 -fliplr(b)];

n1 = 0:length(num1)-1;

n2 = 0:length(num2)-1;

subplot(2,2,1); stem(n1,num1);

xlabel('Time index n');ylabel('Amplitude'); grid;

title('Type 1 FIR Filter');

subplot(2,2,2); stem(n2,num2);

xlabel('Time index n');ylabel('Amplitude'); grid;

title('Type 2 FIR Filter');

subplot(2,2,3); stem(n1,num3);

xlabel('Time index n');ylabel('Amplitude'); grid;

title('Type 3 FIR Filter');

subplot(2,2,4); stem(n2,num4);

xlabel('Time index n');ylabel('Amplitude'); grid;

title('Type 4 FIR Filter');

pause

subplot(2,2,1); zplane(num1,1);

title('Type 1 FIR Filter');

subplot(2,2,2); zplane(num2,1);

title('Type 2 FIR Filter');

subplot(2,2,3); zplane(num3,1);

title('Type 3 FIR Filter');

subplot(2,2,4); zplane(num4,1);

title('Type 4 FIR Filter');

13

0 2 4 6 8

­100

­50 0 50 100

Time index n

Type 1 FIR Filter

­100

­50 0 50 100

Time index n

Type 2 FIR Filter

0 2 4 6 8

­100

­50 0 50 100

Time index n

Type 3 FIR Filter

­100

­50 0 50 100

Time index n

Type 4 FIR Filter

Trang 14

disp('Zeros of Type 1 FIR Filter are');

disp(roots(num1));

disp('Zeros of Type 2 FIR Filter are');

disp(roots(num2));

disp('Zeros of Type 3 FIR Filter are');

disp(roots(num3));

disp('Zeros of Type 4 FIR Filter are');

disp(roots(num4));

- Các tín hiệu kế tiếp nhau cho ta thấy các giá trị M của tín hiệu là khác nhau : tín

hiệu 1 và 3 thì giá trị M chẵn và tín hiệu 2 và 4 thì giá trị M lẽ.

- Tín hiệu 1 có M=8 và a = 1.979

- Tín hiệu 2 có M= 9 và a = 1

- Tín hiệu 3 có M= 8 và a = 0

- Tín hiệu 4 có M = 9 và a = 1

The plots of the impulse responses of the four FIR filters generated by running

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

Trang 15

Filter #1 has zeros at z = 

Plots of the phase response of each of these filters obtained using MATLAB are

< Insert MATLAB figure(s) here Copy from figure window(s) and paste >

Q4.20 The plots of the impulse responses of the four FIR filters generated by running

% Program P4_3

% Zero Locations of Linear Phase FIR Filters

clf;

b = [1 -8.5 30.5 -63];

num1 = [b 81 fliplr(b)];

num2 = [b 81 81 fliplr(b)];

num3 = [b 0 -fliplr(b)];

num4 = [b 81 -81 -fliplr(b)];

n1 = 0:length(num1)-1;

n2 = 0:length(num2)-1;

subplot(2,2,1); stem(n1,num1);

xlabel('Time index n');ylabel('Amplitude'); grid;

title('Type 1 FIR Filter');

subplot(2,2,2); stem(n2,num2);

xlabel('Time index n');ylabel('Amplitude'); grid;

title('Type 2 FIR Filter');

subplot(2,2,3); stem(n1,num3);

xlabel('Time index

n');ylabel('Amplitude'); grid;

title('Type 3 FIR Filter');

subplot(2,2,4); stem(n2,num4);

xlabel('Time index

n');ylabel('Amplitude'); grid;

title('Type 4 FIR Filter');

pause

subplot(2,2,1); zplane(num1,1);

title('Type 1 FIR Filter');

15

0 2 4 6 8

­100

­50 0 50 100

Time index n

Type 1 FIR Filter

­100

­50 0 50 100

Time index n

Type 2 FIR Filter

0 2 4 6 8

­100

­50 0 50 100

Time index n

Type 3 FIR Filter

­100

­50 0 50 100

Time index n

Type 4 FIR Filter

Trang 16

subplot(2,2,2); zplane(num2,1);

title('Type 2 FIR Filter');

subplot(2,2,3); zplane(num3,1);

title('Type 3 FIR Filter');

subplot(2,2,4); zplane(num4,1);

title('Type 4 FIR Filter');

disp('Zeros of Type 1 FIR Filter are');

disp(roots(num1));

disp('Zeros of Type 2 FIR Filter are');

disp(roots(num2));

disp('Zeros of Type 3 FIR Filter are');

disp(roots(num3));

disp('Zeros of Type 4 FIR Filter are');

disp(roots(num4));

- Các tín hiệu kế tiếp nhau cho ta thấy các giá trị M của tín hiệu là khác nhau : tín hiệu 1 và 3 thì giá trị M chẵn và tín hiệu 2 và 4 thì giá trị M lẽ.

- Tín hiệu 1 có M=8 và a = 1.979

- Tín hiệu 2 có M= 9 và a = 1

- Tín hiệu 3 có M= 8 và a = 0

- Tín hiệu 4 có M = 9 và a = 1

Ngày đăng: 25/12/2017, 08:16

TỪ KHÓA LIÊN QUAN

w